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List of symbols 

MoS2 : Molybdenum disulfide 

TMDs : Transition metal dichalcogenides 

MD : Molecular Dynamic 

MS : Molecular statics 

LAMMPS : Large-scale Atomic/Molecular Massive Parallel Simulator 

fi : force acting on atom 

Ei : Potential energy  

ri : position of atom 

θ : Angle between the atoms 

θ0 : Equilibrium angle,  

ϕ : dihedral angle 

mi : mass of atom 

 ri : position of atom 

ai : acceleration of atom  

N : Number of atoms 

Nf : Total translational degrees of freedom of the system 

kB : Boltzmann’s constant 

vα
i : Velocity of atom α in i direction 

T0 : desired temperature 

T(t) : Current temperature  

Q : Effective mass of the thermostat 

𝑉 : Total volume of the system 

𝑃0 : Instantaneous pressure 

𝑃(𝑡) : Desired pressures 

 𝜏P : Time constant for pressure fluctuations 

𝜂 : volume scaling factor 

𝑅0 : center of mass of the system 

SW : Stillinger-Weber  

qij and qji : charges of atoms i and j 

 

 



 

 

Q2 : Two body (bond stretching) interactions 

Q3 : Three body (bond bending) interactions 

U : Potential energy 

F : Applied point load force,  

d : Indentation depth at the center of the membrane,  

r : Hole radius 

ν : Poisson’s ratio of the membrane 

E2D : 2D Young’s modulus  

σ0
2D : 2D pretension 

E : Elastic energy of a crystal  

V0 : Equilibrium volume  

σ : Second-rank Cauchy stress tensor. 

𝐶𝑖𝑗𝑘𝑙 : Fourth-rank anisotropic elastic stiffness tensor. 

ε : Second-rank small strain tensor. 

ch : design vector  

𝑔𝑖 : design variables  

f(ch) : objective function  

P : Properties of the nanostructure obtained from a given design vector ch,  

𝐏𝑟𝑒𝑓 : Desired reference or prescribed properties of the nanostructure 

Pij : Elastic constants to be used during objective function evaluation 
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Synopsis 

In the realm of next-generation electronics, a material of extraordinary promise has emerged: two-

dimensional molybdenum disulfide, or MoS2, a single layer of the mineral molybdenite. While its 

electromechanical properties have garnered significant attention, unlocking its full potential hinges 

on a thorough understanding of its mechanical behavior. This understanding is particularly crucial in 

the context of MoS2 application in both nanodevices, such as sensors and transistors, and composite 

materials, where its potential to replace silicon as a reinforcement material arises due to the ever-

present challenge of miniaturization in conventional electronics. However, a critical barrier exists in 

the form of mechanically weak interfaces that form when MoS2 comes into contact with adjoining 

materials. To bridge this gap and pave the way for reliable MoS2-based systems, this thesis delves 

into the fundamental mechanics of 2D MoS2 using the powerful tools of molecular statics and 

dynamics simulations. 

The first part of this thesis embarks on an exploration of the mechanical properties of MoS2, 

specifically focusing on the impact of structural defects on its monolayer form. The overarching goal 

is to unravel the strengthening mechanisms at play within free-standing MoS2 and decipher how 

defects influence its mechanical response. Through meticulous simulations involving randomly 

distributed defects at varying concentrations, ranging from 0% to 25%, the study sheds light on the 

detrimental effect of these imperfections on the material's elastic properties, with a particularly 

noticeable decline observed at the highest concentration. These valuable insights pave the way for 

informed design principles in the development of 2D MoS2-based devices. 

Building upon these foundational findings, the second part of the thesis embarks on a quest to 

optimize the nanostructure of MoS2. Leveraging the power of an evolutionary algorithm (EA), the 

study sets out to design monolayer 2D MoS2 nanostructures with precisely tailored elastic properties. 

This innovative approach, where the EA works hand-in-hand with molecular dynamics simulations, 

identifies the optimal size of elliptical voids required to achieve the desired mechanical 

characteristics. The success of this methodology underscores its potential in tailoring the mechanical 

properties of MoS2 nanostructures. 

 

 

 

 



 

 

Streszczenie 

Wśród materiałów stosowanych w elektronice nowej generacji pojawił się niezwykle obiecujący 

dwuwymiarowy dwusiarczek molibdenu, czyli MoS2, pojedyncza warstwa mineralnego molibdenitu. 

W literaturze znaczną uwagę poświęcono jego właściwościom elektromechanicznym, uwolnienie 

jego pełnego potencjału zależy od dokładnego zrozumienia jego własności mechanicznych. To 

zrozumienie jest szczególnie istotne w kontekście zastosowania MoS2 zarówno w nanourządzeniach, 

takich jak czujniki i tranzystory, jak i materiałach kompozytowych, gdzie jego potencjał do 

zastąpienia krzemu jako materiału wzmacniającego wynika z stale obecnego wyzwania, jakim jest 

miniaturyzacja w elektronice. Istnieje jednak krytyczna bariera w postaci mechanicznie słabych 

powierzchni międzyfazowych, które tworzą się, gdy MoS2 wchodzi w kontakt z przylegającymi 

materiałami. Aby wypełnić tę lukę i utorować drogę systemom opartym na MoS2, w niniejszej pracy 

zgłębiono mechaniczne własności dwuwymiarowego MoS2 przy użyciu narzędzi statyki i dynamiki 

molekularnej. 

Pierwsza część tej pracy obejmuje badanie właściwości mechanicznych MoS2, ze szczególnym 

uwzględnieniem wpływu defektów występujących w strukturze. Nadrzędnym celem jest odpowiedź 

na pytanie w jaki sposób defekty wpływają na jego własności mechaniczne. Dzięki symulacjom 

obejmującym losowo rozmieszczone defekty w zakresie od 0% do 25% liczby atomów, badanie 

pozwala określić wpływ tych niedoskonałości na właściwości sprężyste materiału, przy czym 

szczególnie zauważalny spadek wartości własności obserwuje się przy najwyższej liczbie defektów. 

Te spostrzeżenia pozwalają w przyszłości na projektowanie nanourządzeń 2D opartych na MoS2. 

Opierając się na wynikach w pierwszej części pracy, druga podejmuje próbę optymalizacji 

nanostruktury MoS2. Wykorzystując możliwości algorytmu ewolucyjnego (EA), badanie ma na celu 

zaprojektowanie jednowarstwowych nanostruktur 2D MoS2 o precyzyjnie dostosowanych 

właściwościach mechanicznych. To podejście, w którym EA współpracuje ręka w rękę z symulacjami 

dynamiki molekularnej, skutecznie określa optymalny rozmiar eliptycznych pustek wymaganych do 

osiągnięcia pożądanych właściwości mechanicznych. Sukces tej metodologii podkreśla jej 

skuteczność potencjał w dostosowywaniu właściwości mechanicznych nanostruktur MoS2. 

 
 

 

 

 

 

 

 

 

 



 

 

Chapter-1: Introduction 

 1.1 Graphene: A Single Layer with Remarkable Properties 

Graphene, a single layer of carbon atoms arranged in a honeycomb pattern, is derived from graphite, 

the material commonly used in pencils. Within each graphene layer, carbon atoms are strongly bound 

by covalent bonds. Graphene along with other graphitic structures are shown in Figure 1.1. However, 

the forces holding the layers together, known as van der Waals forces, are relatively weak. This weak 

interaction allows for the separation of graphene layers, a property that makes it useful as an industrial 

dry lubricant. Graphite's high in-plane conductivity, reaching up to 105 S/cm, has led to its widespread 

use as an electrode material. Additionally, graphite exhibits excellent thermal conductivity, sharing 

many characteristics with metals [1]. The most remarkable properties of graphite emerge when it is 

exfoliated to isolate a single carbon layer. This process was successfully achieved in 2004 by Geim 

and Novoselov [2], earning them the Nobel Prize in Physics in 2010. Following the development of 

various mass production techniques, graphene's exceptional properties have been extensively studied 

[3].  

 

 

Figure 1.1 Schematic structure of (a) graphene, (b) graphite, (c) carbon nanotube and (d) 

fullerene. [232] 



 

 

Graphene exhibits remarkable thermal and mechanical properties, making it a promising material for 

various applications. Its exceptional properties stem from its sp2 hybridized bonds, which form a 

strong and stable honeycomb structure [4]. Graphene's outstanding mechanical properties, 

characterized by a Young's modulus of around 1 TPa and an intrinsic strength of 130 Gpa[5], make it 

highly resistant to deformation and breakage. This resilience is crucial for its use in delicate 

nanodevices, where even minor imperfections can lead to structural failure. The high surface-to-

thickness ratio of graphene, a hallmark of two-dimensional (2D) materials, presents a wealth of 

opportunities for surface functionalization and modification. This property allows graphene to be 

tailored to specific applications by attaching various active principles and compounds. Graphene's 

surface sensitivity makes it a valuable material for biomolecule sensing and delivery. Its conductivity 

changes rapidly in response to the presence of ions or molecules, enabling it to detect and transport 

even minute quantities of these substances [6]. Graphene-based biosensors, fabricated using single 

layers of graphene deposited between electrodes, can be activated or deactivated by the presence of 

specific ions or molecules. These sensors hold promise for various applications in medical diagnostics 

and environmental monitoring [7]. 

Graphene is exceptional due to its unique band structure [8]. The conduction and valence bands touch 

at the Dirac point, resulting in electrons behaving as massless two-dimensional particles. This 

characteristic endows graphene with a range of remarkable properties, including: 

• Extremely high carrier mobility: Graphene exhibits exceptional carrier mobility, far 

surpassing that of conventional semiconductors like silicon (1400 cm2/Vs) [9]. This 

exceptional mobility enables faster and more efficient electronic devices. 

• Ambipolarity: Graphene's Fermi level can be continuously adjusted within the conduction or 

valence band, allowing for electrostatic control of its doping [10]. This property facilitates the 

creation of p-n junctions without chemical doping and enables the tailoring of graphene's 

properties for specific applications. 

• Potential for ohmic contacts: Graphene's tunable Fermi level holds the potential to match the 

work functions of different contact materials, minimizing contact resistance and leading to 

ohmic contacts [11]. 

• Challenges in FETs: The ambipolar and gapless nature of graphene poses challenges in field-

effect transistors (FETs) due to the inability to completely switch off the current. Various 



 

 

alternative structures, such as tunnel field-effect transistors and bilayer structures, have been 

proposed to address this challenge [12]. 

• Bilayer structures: Bilayer graphene structures exhibit a finite bandgap under certain 

conditions (Figure 1.2), offering the possibility of overcoming the limitations of single-layer 

graphene in FETs. 

 

 

 

 

 

 

 

 

 

 

 

Graphene's extraordinary properties are driving its adoption in a diverse array of emerging fields, 

transitioning from theoretical concepts to practical applications. In the realm of optoelectronics, 

where high material absorption is crucial for efficient photon-to-carrier conversion, graphene presents 

unique advantages. Due to its gapless nature, free-doped graphene flakes can absorb light across a 

broad spectrum, ranging from ultraviolet to terahertz frequencies. For photon energies below 3 eV, a 

single carbon sheet exhibits an absorption rate of 2.3%, which increases linearly with the number of 

layers. While this remarkable absorption capability makes graphene an excellent candidate for 

transparent electrodes in photovoltaic devices, its single-layer transparency poses a challenge. To 

address this issue, researchers are exploring strategies to increase the absorption of single-layer 

graphene while maintaining its transparency. 

Figure 1.2 One of the most unusual features of single-layer graphene (top) is that its conical 

conduction and valence bands meet at a point – it has no bandgap. Symmetrical bilayer graphene 

(middle) also lacks a bandgap. Electrical fields (arrows) intro introduce asymmetry into the bilayer 

structure (bottom), yielding a bandgap (Δ) that can be selectively tuned. [233] 

 



 

 

1.2 Transition Metal Dichalcogenide Materials (TMDs): The 2D family blossom 
 

Graphene's two-dimensional (2D) structure presents both advantages and challenges and has inspired 

the exploration of other 2D materials with complementary properties. The 2D nature of graphene 

offers several advantages, including its exceptional electrical conductivity, thermal conductivity, and 

mechanical strength. However, it also presents challenges, such as its limited ability to open and close 

a transistor channel, which is crucial for certain electronic applications. To overcome these limitations 

and explore a broader range of functionalities, researchers have turned their attention to other 2D 

materials. These materials exhibit a variety of properties that complement graphene, opening up new 

possibilities for device design and application. The recent discovery of a diverse family of 2D 

materials, each with its own unique characteristics, has further expanded the potential of this field. 

These materials offer a vast array of properties to explore and combine, providing a rich landscape 

for materials design and innovation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 highlights a diverse range of 2D materials, each exhibiting unique properties that 

complement graphene. These materials include native insulators like hexagonal boron nitride (h-BN), 

semiconductors such as transition metal dichalcogenides (TMDs), metals like MoS2 and TiS2, 

superconductors, and topological insulators like NbSe2 and Sb2Te3 [13]. The weak interaction 

between layers held together by van der Waals forces enables the stacking of these 2D materials to 

create novel van der Waals heterostructures [14]. This process, akin to a "Lego game," allows for the 

Figure 1.3 The denomination of 2D materials encompasses a wide variety of materials with 

different properties, which can be combined to design and create a full new set of devices 

based on them. Figure inspired in [5,32]. 



 

 

combination of materials with diverse properties, leading to the emergence of new functionalities as 

shown in Figure 1.4 [15] This ability to tailor material properties by stacking different 2D materials 

opens up a vast array of possibilities for device design and application. By combining the unique 

characteristics of individual 2D materials, researchers can create heterostructures with enhanced 

performance and novel functionalities. 

 

 

 

 

 

 

 

 

 

 

 

 

Transition metal dichalcogenides (TMDs) are a diverse group of materials with unique properties that 

make them promising for a variety of applications. These materials, characterized by their formula 

MX2, where M is a transition metal (Mo, W) and X is a chalcogen (S, Se, or Te), exhibit a wide range 

of behaviors, including 2H-MoS2 semiconducting and 1T-MoS2 metallic properties [16].  TMDs 

transition metal represents from group 4 to 10 and chalcogen element encompass a diverse range of 

layered materials with varying electronic properties as shown in Figure 1.5. These materials exhibit 

a spectrum of properties, ranging from insulating (e.g., HfS2) to semiconducting (e.g., 2H-MoS2 and 

2H-WS2), semi-metallic (e.g., WTe2 and TiSe2) to truly metallic (e.g., NbS2 and VSe2) [17]. The 

tunable bandgap of TMDs arises from the gradual filling of the nonbonding d orbitals of transition 

metal electrons. Additionally, the presence of unpaired d orbitals in transition metals leads to exotic 

properties such as superconductivity, charge density waves (CDW), magnetism, and Mott transition 

(metal to non-metal transition).  

Figure 1.4 Vertical stacking of 2D materials forming heterostructures [17]. 



 

 

 

Figure 1.5 The transition metals and the three chalcogen elements that crystallize into layered 

structures are highlighted in the Periodic Table. The transition metals that crystallize into layered 

structures with some chalcogens but not with others are framed. The columns in the Periodic Table 

show both ‘old’ and new labels, i.e. chalcogens can be referred to as either group VIA or group 16 

elements [18] 

 

One remarkable feature of TMDs is the difference in properties between their monolayer and bulk 

counterparts. This distinction arises from quantum confinement effects, which cause the monolayer 

material to transition from an indirect bandgap in the bulk form to a direct bandgap in the single-layer 

form [19]. The direct bandgap of monolayer TMDs, along with their sizeable bandgaps, makes them 

attractive candidates for logic circuits [20–22]. Their atomic-body thickness also enables effective 

control of the channel by the gate [23], mitigating the short-channel effects that can hinder 

performance in conventional transistors. In addition to their potential for logic applications, TMDs 

also exhibit promising optoelectronic properties. Their high absorption coefficients, comparable to 

those of silicon [24], and their diverse absorption spectra make them suitable for the development of 

photodetectors, multijunction solar cells, and ultrathin solar cells [25–29]. Furthermore, TMDs have 

demonstrated the ability to emit light, making them viable materials for light-emitting diodes (LEDs). 

Researchers have successfully fabricated LEDs using various TMDs, showcasing their potential in 

optoelectronic devices [30,31].  

There is growing interest in exploring the properties of other two-dimensional (2D) materials as an 

alternative approach. Investigating the characteristics of other 2D materials holds promise for 

addressing the limitations of graphene and opening up new possibilities for semiconductor 



 

 

applications. Researchers are actively seeking alternative 2D materials that can fulfill specific 

application requirements. One such material is mono-layered molybdenum disulfide (MLMoS2), 

which is the focus of study in this research. By exploring and understanding the properties and 

behavior of materials like MLMoS2, researchers aim to find suitable alternatives to graphene for 

specific applications, taking into consideration factors such as band gap engineering, electrical 

properties, and overall performance. 

1.2.1 Molybdenum disulfide (MoS2):  

 

Molybdenum disulfide (MoS2) holds immense promise for next-generation electronic and 

optoelectronic devices due to its unique properties [32]. As the first semiconducting transition metal 

dichalcogenide (TMD) obtained in a monolayer form, MoS2 exhibits a remarkable transformation in 

its band structure, transitioning from an indirect bandgap in bulk form to a direct bandgap in the 

monolayer state. This unique property complements graphene, a zero-bandgap material, making 

MoS2 an ideal candidate for various applications. MoS2 boasts an impressive room-temperature 

carrier mobility of approximately 100 cm2 V-1s-1, along with a large switching on/off ratio exceeding 

108 [20]. Moreover, monolayer MoS2 exhibits exceptional properties such as valley polarization and 

valley Hall effect, arising from its lack of inversion symmetry [33]. Furthermore, 2D MoS2 emerges 

as a promising low-cost and highly efficient electrocatalyst for the hydrogen evolution reaction 

(HER). Its catalytic activity can be further enhanced by increasing edge sites and defect density, as 

well as by employing heteroatom substitutional doping [34]. Figure 1.6 depicts the exponential 

increase in interest over the past several years, as evidenced by the number of publications per year 

found in the Web of Knowledge using the keywords "MoS2" and "monolayer." This graph illustrates 

the growing attention and research efforts dedicated to two-dimensional TMD MoS2. 

 



 

 

 

Figure 1.6 A histogram showing the number of papers about MoS2 vs. publication year  

(up to Feb 2024) . Data obtained from 

https://app.dimensions.ai/discover/publication?search_mode=content&search_text=2D%20molybd

enum%20disulfide&search_type=kws&search_field=full_search 

 

Molybdenum disulfide (MoS2) exhibits a layered structure, where each layer consists of covalently 

bonded S-Mo-S atomic planes held together by weak van der Waals forces in the bulk form [35]. In 

monolayer MoS2, two polymorphs exist, distinguished by the coordination manner between the Mo 

atom and its surrounding six S atoms. These polymorphs are trigonal prismatic coordination (D 3h 

point group), commonly referred to as 1H, and octahedral coordination (D 3d), commonly known as 

1T (Figure 1.7 a, b)  [36]. Multilayer MoS2 displays a wider range of polymorphs due to variations 

in the stacking sequence between layers. Three extensively studied polytypes are 1T, 2H, and 3R. The 

letters represent different crystal symmetry systems: trigonal (1T), hexagonal (2H), and 

rhombohedral (3R). The digits indicate the number of layers in each unit cell (Figure 1.7 c, d) [37]. 

The 2H and 3R phases are energetically more favorable than the metastable 1T phase and are 

commonly found in natural minerals and synthetic products. Both 2H and 3R share the same 

intralayer coordination configuration (trigonal prismatic) but differ in interlayer coupling manners. 

In the 2H polytype, two layers are fully eclipsed, with Mo (S) atoms of one layer positioned directly 

above S (Mo) atoms of the other layer. In the 3R phase, three layers are staggered, with S atoms in 

the middle layer located above Mo atoms in the bottom layer and below the hollow hexagonal center 

of the top layer. The lattice orientation between adjacent layers in 2H-MoS2 exhibits a 60° twist, while 

all three layers in the unit cell of 3R-MoS2 share the same crystal direction. 

https://app.dimensions.ai/discover/publication?search_mode=content&search_text=2D%20molybdenum%20disulfide&search_type=kws&search_field=full_search
https://app.dimensions.ai/discover/publication?search_mode=content&search_text=2D%20molybdenum%20disulfide&search_type=kws&search_field=full_search


 

 

 

 

Figure 1.7 Structural models and characterizations of various polymorph phases of MoS2. (a,b) 

Atomic models showing 1H and 1T phases of monolayer MoS2, respectively. (c) 3D schematic 

illustration of multilayer MoS2. (d) Atomic models displaying three different phases, 1T, 2H and 3R, 

in multilayer MoS2, respectively. (e,f) ADF-STEM images of bilayer MoS2 exhibiting 2H and 3R 

stacking sequences, respectively, where an atomic column corresponding to a pair of stacked 

sulphur atoms in the centre of each hexagonal ring can be seen in (f) as a distinct feature of 3R 

polytype. (g,h) Resonance Raman and PL spectra displaying distinguishable variations between 2H 

and 3R stacked bilayer MoS2. (i) ADF-STEM image showing an artificial generation of 1T phase in 

the 2Hphase monolayer MoS2 by a controllable electron irradiation using in-situ scanning electron 

microscopy. Blue solid circles, yellow solid circles and yellow dashed circles indicate Mo, 2S and 

1S atoms, respectively. The green dashed line shows the boundary between 1H and 1T phase.[[36], 

[38], [39], [40]] 

 



 

 

Annular dark-field scanning transmission electron microscopy (ADF-STEM) is the most direct and 

unambiguous tool for distinguishing between different phases of 2D MoS2 due to its atomic resolution 

and quantitative relationship between intensity and atomic number (Figure 1.7 e, f) [38,41]. Raman 

and PL spectroscopy can also identify different stacking configurations in bilayer and trilayer MoS2 

(Figure 1.7 g, h) [39,42]. Phase conversions between different MoS2 phases, particularly between 2H 

and 1T phases, have been studied extensively (Figure 1.7 i), [40,43]. 2H-MoS2 is a diamagnetic 

semiconductor, while 1T-MoS2 is a paramagnetic metal [37]. The phase transition from 2H to 1T can 

be triggered by intercalation with alkali metals, rhenium (Re) atom doping, or controllable electron 

beam irradiation [44,45]. These methods alter the d-electron count for Mo atoms in MoS2, 

destabilizing the original 2H phase.  

1.2.2 Properties of Molybdenum disulfide (MoS2):  

Monolayer and few-layer MoS2 possess unique properties that make them promising materials for 

sensing applications [32,46,47]. These materials can be synthesized through various methods, 

including mechanical exfoliation, liquid exfoliation, and chemical vapor deposition (CVD) [17,47]. 

• Mechanical exfoliation: Involves peeling off thin layers of MoS2 from bulk MoS2 using 

adhesive tape or other mechanical means (Figure 1.8 a). 

• Liquid exfoliation: Utilizes solvents or liquid solutions to disperse MoS2 flakes into individual 

layers (Figure 1.8 b). 

• Chemical vapor deposition (CVD): A growth technique that deposits thin films of MoS2 onto 

a substrate through chemical reactions. 

 

Figure 1.8 (a) Mechanical exfoliation involves peeling successive layers from a van der Waals 

material using a tape. (b) Liquid exfoliation often uses bubbles to force layers apart. 



 

 

Among the liquid exfoliation methods, the lithium intercalation technique can induce a phase 

transition in MoS2, converting the 2H phase to octahedral coordinated phases [17,47,48]. These 

phases exhibit distinct properties compared to the 2H phase, potentially enhancing their sensing 

capabilities. 

Molybdenum disulfide (MoS2) possesses remarkable mechanical properties that make it suitable for 

flexible nanodevices. Studies on 5-25 layers and monolayer MoS2 have demonstrated its exceptional 

mechanical strength [49]. Monolayer MoS2 exhibits a 2D elastic modulus of approximately 170 to 

180 N/m and a Young's modulus of around 270 GPa, slightly exceeding that of stainless steel [50,51]. 

Thin-film transistors fabricated using CVD-grown MoS2 have shown remarkable mechanical 

flexibility without compromising their electrical performance upon bending [52]. These findings 

suggest that MoS2 is a promising candidate for the development of flexible nanodevices, Mechanical 

properties of MoS2 are shown in Table 1: 

Table 1: Mechanical properties of MoS2 

Property Value 

2D Elastic Modulus ~170 to 180 N/m 

Young's Modulus ~270 GPa 

The exceptional mechanical properties of MoS2, coupled with its remarkable electrical and optical 

properties, make it a versatile material with immense potential for various applications, including 

flexible electronics, energy storage, and sensing devices. 



 

 

 

Figure 1.9. Electronic band structures of bulk, four-layer, two-layer, and single-layer MoS2 (from 

left to right). Black arrows indicate the fundamental transitions. The horizontal dashed lines 

demonstrate the energy of the highest occupied states at the K point, which becomes the VBM in 

single layers. As the number of layers decrease, the energy at the Γ point reduces, and becomes 

lower than K point state in single layers, leading to direct gap transition. [53] 

 

Figure 1.10 Photoluminescence spectra of mono-and bilayer MoS2 on Si/SiO2 substrates at an 

excitation energy of 2.33 eV. The sharp peaks just below 2.3 eV are the Raman modes[54]. 

Molybdenum disulfide (MoS2) exhibits exceptional electrical and optical properties due to its unique 

electronic structure [32,55]. In bulk form, MoS2 is an indirect bandgap semiconductor, meaning that 

the transition from the valence band to the conduction band requires energy transfer through a 



 

 

phonon, or lattice vibration. However, when MoS2 is thinned to the monolayer regime, it undergoes 

a remarkable transformation becoming a direct bandgap semiconductor. This direct bandgap property 

is crucial for optoelectronic applications, as it allows for efficient absorption and emission of light. 

The transition from indirect to direct bandgap in monolayer MoS2 arises from two factors: 

• Quantum confinement effects: As the thickness of MoS2 is reduced, the energy levels of the 

electrons are confined, leading to a shift in the band structure (Figure 1.9). 

• Interaction of S orbitals: The pz orbitals of S atoms from neighboring layers interact, 

contributing to the indirect bandgap in bulk MoS2. However, in the monolayer, these 

interactions are significantly reduced, resulting in the direct bandgap at the K point 

[53,54,56,57]. 

The direct bandgap at the K point in monolayer MoS2 is further influenced by spin-orbit coupling 

(SOC), which splits the valence band maximum (VBM) at the K point into two distinct energy levels 

[58–60]. This splitting has significant implications for the valley-dependent properties of MoS2, 

which are highly sought after for potential applications in valleytronics. 

The electronic structure of molybdenum disulfide (MoS2) has a significant impact on its optical 

properties. In the optical absorption and reflectance spectra of MoS2, three primary peaks are 

observed within the energy range of ~1.8 to 3eV as shown in Figure 1.10: 

• Peaks A and B: These low-energy peaks correspond to excitonic transitions at the K point 

from the spin-split bands. Their positions are relatively insensitive to the number of MoS2 

layers. 

• Peak I: This higher-energy peak is associated with interband transitions around the Γ point 

[61–63]. 

Due to the transition from an indirect to a direct bandgap in the monolayer regime, photoluminescence 

(PL) properties exhibit a strong dependence on the number of layers. In bulk MoS2, PL is negligible, 

but it emerges as the number of layers decreases, approaching the monolayer [53,54]. 

Mak et al. [54] demonstrated a remarkable enhancement in the quantum yield (QY) of PL for 

monolayer MoS2 compared to the bulk case. The PL spectra for the monolayer exhibited a single peak 

at 1.90 eV, corresponding to the direct optical bandgap. For few-layers MoS2, three peaks were 

observed: two (A and B) related to the direct gap and a third (I) attributed to the indirect bandgap. 



 

 

The splitting of the valence band at the K point due to interlayer coupling and spin-orbit coupling 

(SOC) gives rise to two excitons associated with peaks A and B. 

Adsorption of gases on monolayer MoS2 can enhance the PL due to charge transfer between MoS2 

and the adsorbed molecules. This PL modulation is reversible, offering potential applications in gas 

sensing devices [64]. The combination of the optical direct bandgap and semiconducting properties 

of MoS2 makes it a promising material for optoelectronic applications, including photodetectors and 

light-emitting devices [32,47]. 

The number of layers in molybdenum disulfide (MoS2) has a significant impact on its Raman spectra 

and electronic bandgap properties. 

 

Figure 1.11 Raman spectra of different locations with various thicknesses. The left and right dashed 

lines indicate the positions of the E1
2g and A1g peaks in bulk MoS2 respectively [65]. 

• Raman Spectroscopy: The difference in Raman shift between the two characteristic modes 

E1
2g and A1g varies with the number of layers, providing a convenient method for determining 

layer thickness as shown in Figure 1.11 [65]. 

• Electronic Bandgap: Monolayer MoS2 exhibits a larger electronic bandgap than its optical 

bandgap due to its high exciton binding energy [47,56,59,62,66]. Theoretical calculations 

estimate the electronic bandgap for monolayer MoS2 to be around 2.80 eV, while experimental 

measurements using scanning tunneling spectroscopy (STS) have reported a value of 2.16 eV 

for monolayer MoS2 on graphite [67,68]. 

• Substrate Effects: The substrate upon which MoS2 is deposited can influence the value of its 

electronic bandgap. Theoretical studies suggest that the bandgap tends to decrease as the 

environmental dielectric constant increases [67]. This effect could be exploited for bandgap 

tuning in Field-Effect Transistors (FETs). 



 

 

Monolayer molybdenum disulfide (MoS2) has emerged as a promising material for next-generation 

ultrathin electronic devices due to its unique bandgap and promising electrical properties [32,47]. 

• Theoretical Carrier Mobility: Theoretical calculations predict a room-temperature carrier 

mobility of approximately 410 cm2V-1s-1 for monolayer MoS2, limited by optical phonon 

scattering (Figure 1.11) [69]. 

• Experimental Carrier Mobility: Early experiments on MoS2 field-effect transistors (FETs) 

demonstrated mobilities ranging from 0.5 to 3 cm2V-1s-1 [47,57]. 

• Dielectric Engineering: Dielectric engineering using high-κ dielectric materials can 

significantly enhance carrier mobility [69,70]. 

• Ambipolarity: MoS2 FETs can be fabricated in n-type, p-type, or ambipolar configurations 

[32,47]. 

• High-Performance FETs: Radisavljevic et al. demonstrated an n-type MoS2 FET using HfO2 

as the gate dielectric, achieving high current on/off ratio (>108), room-temperature mobility 

of 200 cm2V-1s-1, and a subthreshold swing of 74 mV per decade [20]. 

Molybdenum disulfide (MoS2) exhibits unique properties arising from its symmetry, particularly the 

presence or absence of an inversion center. 

• Even-Layered MoS2: Few-layer MoS2 with an even number of layers possesses inversion 

symmetry. 

• Odd-Layered MoS2: Few-layer MoS2 with an odd number of layers lacks inversion symmetry 

[32]. 

• Spintronics and Valleytronics Applications: Monolayer MoS2, lacking inversion symmetry, 

exhibits a combination of spin-orbit coupling (SOC) and valley-coupling, making it a 

promising material for spintronics and valleytronics applications [46,48]. 

• Spin Splitting: SOC in monolayer MoS2 induces a spin splitting of the valence band, with a 

value around 150 meV [55,58,60,71]. 

• Piezoelectricity: Monolayer and odd-layered MoS2 exhibit piezoelectricity due to the absence 

of inversion symmetry, while even-layered and bulk MoS2 do not [72]. 

• Strain Engineering: Applying strain, particularly uniaxial tensile strain, can induce a decrease 

in the optical bandgap and a transition from direct to indirect bandgap in MoS2 [61,73–75]. 

• Gating: Gating using electric fields can modulate the electronic properties of MoS2. 

• Alloying: Alloying MoS2 with other materials can alter its bandgap and electronic 

characteristics. 



 

 

• Heterostructures: Combining MoS2 with other materials to form heterostructures can 

introduce new functionalities and enhance its properties. 

• Nanosheet Dimensions: Modifying the dimensions of MoS2 nanosheets can influence their 

electronic properties. 

• Defects and Doping: Introducing defects or intentional doping can tailor the electronic 

properties of MoS2 [61,76]. 

• Edge Effects: The edges of MoS2 nanosheets play a significant role in its properties, 

particularly in catalytic reactions. Different edge morphologies can exhibit distinct properties, 

such as metallic character or magnetism [77,78]. 

Despite their many promising properties, 2D materials still face several challenges that need to be 

addressed before they can be widely adopted in commercial applications. One of the primary 

challenges is developing an optimal, efficient, and scalable fabrication process. The synthesis of high-

quality, pristine 2D material samples consistently and reliably is a complex task. Additionally, the 

introduction of new materials and fabrication techniques can be a lengthy and costly endeavor, 

requiring significant time and financial investments. Overcoming these challenges will require 

continued research and development efforts to refine existing fabrication methods, explore novel 

synthesis techniques, and optimize processing parameters. By addressing these limitations, 

researchers can pave the way for the widespread adoption of 2D materials in a variety of applications 

across various industries. 

The distinction between a small incremental step and a groundbreaking advancement in technology 

can be difficult to discern at the moment. The invention of the field-effect transistor, initially 

perceived as a minor improvement, has revolutionized electronics. Similarly, the discovery of 

graphene, initially regarded as a mere curiosity, has sparked a revolution in materials science and 

related fields. Despite the remarkable properties of graphene and other 2D materials, their ultimate 

impact on society remains uncertain. To fully realize their potential, researchers must deepen their 

understanding of their properties and working principles, enabling the development of innovative 

applications and transformative technologies. The journey from a scientific curiosity to a societal 

impact is often a protracted and challenging one. Only time will tell whether 2D materials will follow 

a similar trajectory to the field-effect transistor, fundamentally altering the landscape of technology 

and shaping our future. 

 

 



 

 

1.3 Aims and Goals of the Thesis: 

The realm of nanotechnology has witnessed a surge of interest in two-dimensional (2D) materials, 

exemplified by the widespread applications of graphene. These materials hold immense promise for 

revolutionizing fields ranging from electronics to civil engineering (cementitious composites enable 

smarter functionality of buildings). While carbon-based structures like graphene and nanotubes have 

garnered significant attention, other elements, and compounds, such as molybdenum disulfide 

(MoS2), offer exciting possibilities for the creation of novel 2D nanostructures. 

A critical challenge lies in the design of stable configurations for these new MoS2-based 2D 

nanostructures. While stable configurations are known for typical structures, predicting them for new 

designs remains an intricate task. This research proposes a new approach to address this challenge: 

the intelligent design of new 2D atomically stable MoS2-based nanostructures with prescribed 

properties. 

The cornerstone of this intelligent design approach is the utilization of bioinspired global optimization 

techniques, specifically memetic algorithms. These algorithms represent a recent frontier in 

evolutionary computation, and their power lies in their ability to synergistically combine the strengths 

of evolutionary algorithms (mimicking natural selection) with local improvement procedures. This 

synergy empowers memetic algorithms to excel at searching for new solutions, making them ideally 

suited for the task of designing stable and functional 2D nanostructures. 

To achieve the goal of creating new stable nanostructures, the work uses a powerful computational 

tool in identifying configurations that possess minimal potential energy while adhering to additional 

constraints that guarantee the desired material properties of the structure. The efficacy of the methods 

employed within this work is meticulously evaluated using established techniques: LAMMPS, a 

software package for molecular dynamics simulations, and a custom-built Evolutionary Algorithm 

optimization software. 

A crucial aspect of this research involves the accurate description of interatomic interactions within 

MoS2 nanostructures. To achieve this, the Stillinger-Weber potential is employed. The optimization 

process itself will encompass two key steps. First, the distribution of MoS2 atoms within a periodic 

cell is optimized by leveraging the aforementioned optimization technique and molecular 

simulations. Second, algorithms that are adept at avoiding entrapment in local optima is utilized to 

ensure the identification of the true global minimum energy configuration. The objective function 

guiding the optimization process will be tailored to either minimize energy or achieve a specific set 

of desired properties for the microstructure. 



 

 

The research leverages LAMMPS for modeling MoS2 flat structures. Notably, the optimization 

process is conducted using a bespoke intelligent bioinspired algorithm, which incorporates both 

evolutionary and conjugate gradient-based algorithms. While achieving a stable structure is a 

significant accomplishment, the research vision extends beyond this. It aspires to design structures 

that not only exhibit stability but also possess prescribed properties, such as specific stiffness 

characteristics or anisotropic/orthotropic behavior. 

Molecular statics and dynamics simulations are integral to the success of this work. The accuracy of 

the atomic structure modeling has a profound impact on the functionality used during optimization. 

Validating and simplifying MoS2 nanostructure models will provide invaluable input for the final 

designs and influence the overall computational cost associated with the design of these 

nanomaterials. 

In essence, this research ushers in a new paradigm for the design of MoS2-based 2D nanostructures. 

By harnessing the power of bioinspired optimization techniques, the work paves the way for the 

creation of novel materials with tailored properties, opening avenues for new advancements in the 

field of nanomaterial science. 

1.3.1 Overview of the Proposed Technique  
 

To illustrate the motivation behind this investigation and to give a basis for understanding the 

information in the following chapters, following is an overview of how an evolutionary process might 

serve as a natural framework for an intelligent design process. 

 

1.3.2 Modelling Strength of Molybdenum disulfide (MoS2) 

Molybdenum disulfide (MoS2) stands out with its impressive electronic and mechanical properties, 

making it a promising candidate for future devices. However, a major hurdle exists simulating MoS2 

is computationally expensive. Additionally, our knowledge of MoS2's strength under different 

processing conditions is limited and the details of the modelling strength is discussed in chapter 3. 

This research tackles these challenges with a two-fold approach, focusing on the mechanical response 

of monolayer MoS2 and the influence of defects. The main goal is to understand how defects affect 

MoS2's mechanical behavior and the mechanisms that strengthen pristine MoS2. This knowledge is 

crucial for designing high-performance 2D MoS2 devices. 

The first step involves developing efficient models to accurately capture MoS2's mechanical behavior. 

This is achieved in two stages. First, a detailed Molecular statics simulation is performed to gain a 



 

 

fundamental understanding of how MoS2 behaves at the atomic level. Then, using this knowledge, 

computationally efficient nanostructured models are built for further investigation of MoS2-based 

systems. 

The second stage explores the mechanical properties of MoS2, particularly how defects within the 

monolayer structure affect its strength. Simulations are conducted on MoS2 monolayers with 

randomly distributed defects at varying concentrations (0% to 25%). By analyzing the response of 

these structures, the research reveals a detrimental effect of defects on the material's elasticity, 

especially at higher defect concentrations. This information is valuable for developing design 

principles that create robust 2D MoS2 devices with superior mechanical properties. 

1.3.3 Evolutionary Algorithms in Design 

Evolutionary algorithms have become a cornerstone of global optimization techniques. Inspired by 

the natural world and the process of evolution, these algorithms excel at finding global solutions 

across a vast search space. The core elements and mechanisms used within these algorithms mirror 

biological principles, creating a truly bioinspired approach.  

The optimization process works on a population of potential solutions, often referred to as 

"individuals" with "chromosomes" that contain design variables. These variables, called "genes," are 

typically represented by floating-point numbers. The quality of each individual is evaluated using a 

"fitness function," which considers the objective function alongside any additional problem-specific 

factors. 

Memetic algorithms take this approach a step further by combining the strengths of evolutionary 

algorithms with local improvement methods. These hybrid algorithms, sometimes called "hybrid 

evolutionary algorithms," leverage the global search capabilities of evolutionary techniques alongside 

targeted refinements from local optimization methods. 

In this work, a memetic algorithm is implemented that couples a global evolutionary algorithm with 

a local conjugate gradient algorithm. The evolutionary algorithm remains the driving force, 

maintaining a population of potential solutions that evolves over time. Standard operators like 

mutation and crossover are employed when modification is necessary, and the selection process is 

also preserved. However, the local conjugate gradient algorithm steps in before fitness functions are 

calculated. It modifies the genes in each chromosome, subtly influencing the evolutionary algorithm's 

search process. This modification guides the evolutionary process towards optimal solutions by 

balancing exploration (finding new search areas) and exploitation (refinement around promising 



 

 

solutions). This approach is particularly well-suited for problems with highly multimodal fitness 

landscapes, where traditional evolutionary algorithms might struggle to escape local optima. 

chapter 4 delves deeper into the specifics of this memetic algorithm and its integration with molecular 

dynamics simulations using LAMMPS software. 

1.3.4 Summary 

 

 In this introduction, a general flavor of the work motivating this thesis has been presented. The idea 

of EA optimization is discussed, and the short brief procedure of nano-level optimization is explained. 

The similarity between successful long term product development and Darwinistic evolution is 

motivation to investigate design methods based on an evolutionary principle. For this purpose, a 

heuristic search routine known as the evolutionary algorithm is introduced, and some indications of 

the potential for the use of evolutionary algorithms in design optimization are discussed. This 

provides the background for the application of evolutionary principles to the automated topological 

design of structures. 

1.3.5 Scope of Thesis: 

 

The objective of this doctorate project is to create a method for intelligent design of 2D nanostructures 

with prescribed properties based on molybdenum. The nanostructures obtained during the intelligent 

designed based on a memetic optimization process should have stable configuration (minimum 

energy) and subsequently study the mechanical properties of nanostructure for the prescribed 

properties (e.g., mechanical, and thermal properties of material). 

 

The thesis covers the research that has been implemented over the course of Poland PhD degree at 

the information and computational sciences of IPPT, PAN and Mechanical Engineering division of 

Politechnika Slaska (SUT), Gliwice. It unfolds with summarizing the recent progress of the study of 

the structures, properties of monolayer MoS2. These contents are the cornerstone for my following 

investigation, which set up the fundamental knowledge and indicate the gaps needed to be filled in 

this research field. Subsequently, the series of characterization techniques with molecular simulation 

and typical data processing methods employed in my research are introduced in Chapter 3, The detail 

can be found in corresponding published papers.  

The general structure of my results is summarized in Figure 1.12. My work starts with the study of 

atomistic modelling monolayer MoS2, based on the above literature review, it is clear that 

computational cost in modelling MoS2 is a fundamental challenge, and the current knowledge on the 

mechanical properties of MoS2 under various processing conditions (e.g. defects, inclusions and 

temperature) is limited. Therefore, the objective of the thesis is to develop computationally efficient 



 

 

molecular-based models to analyze the mechanical stiffness of pristine and defective MoS2. In order 

to achieve this objective, a two-step approach is employed: 

First, a comprehensive MD simulation studies is conducted to gain insight basic understanding of the 

mechanics of MoS2 mechanism of monolayer MoS2 by modeling performed on suspended free-

standing membrane with comparison to experiment and to explore the influence of structural defects 

on the mechanical properties of monolayer MoS2 by modelling monolayer MoS2 membranes with 

defects and simulating the same. 

Then, using this knowledge, Evolutionary optimization is used to design computationally efficient 

molecular-based MoS2 nanostructures models that are developed based on prescribed mechanical 

properties. The purposes of this work are to establish practical synthesis strategies, which can design 

MoS2 monolayers for further property investigations, and to have a universal and in-depth 

understanding of the design and optimization process, which has a potential of being expanded to 

other 2D materials.  

The research focus to understanding the atomic structure of monolayer MoS2 by employing the large-

scale atomistic massive molecular parallel simulator (LAMMPS), which models and stimuli to 

modify the intrinsic periodicity of the MoS2 lattice, thus tailoring its properties from the bottom level. 

defects were first investigated by introducing a mild concentration of S vacancies, which are prone 

to migrating and aggregate into vacancies lines (Chapter 3). Both lattice distortions for defects and 

anti-site defects have been modelled with LAMMPS. The calculations were conducted to predict the 

mechanical properties evolution as the defects extend and broaden. Prolonged focus of defects 

triggers the voids in suspended monolayer MoS2, which provides an opportunity to design the 

material behavior down to the atomic level (Chapter 4). Large-scale molecular dynamics (MD) 

simulations were applied to predict the toughness of defective monolayer MoS2 compared with that 

of pristine.  



 

 

 

Figure 1.12. Schematic illustration showing the overall structure of my thesis. 

 

 



 

 

Chapter 2  

Molecular Dynamics Simulations 
 

Molecular Dynamics (MD) is a computer simulation method that uses the principles of mechanics to 

track the time evolution of a system of interacting atoms. The interactions between the atoms are 

described using molecular mechanics potential fields. MD was first developed in the late 1950s [79] 

and has since become a widely used tool in many fields, including materials science, chemistry, 

biophysics, and drug discovery. One of the most popular MD simulators is Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS), which is designed to simulate large-

scale systems and can run in parallel on high-performance computing architectures. OVITO is a 

software that is used to visualize and analyze MD simulations. By using MD, researchers can gain 

insights into the behavior and properties of molecular systems, such as the motion of atoms, energy 

transfer, and structural changes. MD simulations have been used to study a wide range of phenomena, 

including the properties of materials, the behavior of biomolecules, and the mechanism of chemical 

reactions. 

2.1 Molecular Dynamic simulations Basic Theory  

2.1.1 Equation of Motion 

 

Molecular dynamics can be divided into two basic steps.  

Step 1: Calculate the interacting forces between the atoms. 

The first step in an MD simulation is to calculate the forces acting on each atom in the system. These 

forces are determined by the potential energy of the system, which is typically described by a 

molecular mechanics (MM) potential field. The MM potential field considers the various types of 

interactions between atoms, such as bond stretching, bond bending, and van der Waals interactions. 

Step 2: Integrate Newton's equations of motion. 

Once the forces acting on each atom have been calculated, the next step is to integrate Newton's 

equations of motion to update the positions and velocities of the atoms. Newton's second law of 

motion states that the force acting on an object is equal to the mass of the object times its acceleration. 

The interacting force acting on atom i, denoted as fi, is obtained from the gradient of the molecular mechanics’ 

potential field.  The force acting on atom i (fi) is given by [80] 

 



 

 

 
𝑓𝑖 =

−𝜕𝐸𝑖
𝜕𝑟𝑖

 
   (2.1) 

where Ei and ri are the potential energy and position of atom i, respectively. Potential energy of atoms is given 

by a molecular mechanics potential field.  The specific mathematical formulation for the force 

calculation depends on the chosen molecular mechanics potential field. Some common MM potential 

fields include Lennard Jones (LJ), Reactive force fields (ReaxFF), Morse and Stillinger Weber (SW). 

These potential fields typically incorporate parameters that describe the interactions between different 

atom types, including bond stretching, angle bending, torsional rotation, and non-bonded interactions 

such as van der Waals forces and electrostatic interactions. The mathematical formulation for the 

force calculation for some common types of interactions are shown in Table 2.1: 

Table 2.1 Examples of interatomic interactions 

Interaction type Mathematical formulation 

Bond stretching f=−k(r−r0) 

Angle bending f=−k(θ−θ0) 

Torsional rotation f=−k(ϕ−ϕ0) 

Non-bonded interactions f=−C/ r6+D/ r8 

 

where: 

•  f is the force, k is the force constant, r is the distance between the atoms, r0 is the equilibrium bond 

length, θ is the angle between the atoms, θ0 is the equilibrium angle, ϕ is the dihedral angle, ϕ0 is the 

equilibrium dihedral angle, C and D are constants that depend on the atom types. 

Once the interacting forces have been determined, they are used in the integration of Newton's 

equations of motion. This integration scheme allows for the prediction of the positions and velocities 

of the atoms over time. By iteratively updating the atom positions based on the calculated forces, the 

trajectory of the system can be simulated and analyzed. Overall, the combination of determining 

interacting forces from a molecular mechanics potential field and integrating Newton's equations of 

motion enables the simulation of molecular dynamics, providing insights into the behavior and 

properties of the system under study. 

          

 

 

 

 



 

 

There are several molecular mechanics (MM) potential fields available that are suitable for simulating 

various systems. In Section 2.3, an overview of these potential fields is provided. Once the force 

acting on an atom is determined, it is possible to calculate the acceleration of the atom using Newton's 

second law of motion. 

 
𝑓𝑖 = 𝑚𝑖

𝜕2𝑟𝑖
𝜕𝑡2

= 𝑚𝑖𝑎𝑖 
   (2.2) 

where mi, ri, and ai are the mass, position, and acceleration of atom i, respectively.  

A system of atoms is allowed to move under these accelerations for a time period called time step. 

The new positions and velocities of the atoms are obtained using a numerical integration method such 

as velocity Verlet method [80]. According to the velocity Verlet method, 
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            (2.3) 

Where r, v, and a, are the position, velocity, and acceleration of an atom, respectively; t0 is the initial 

time; ∆t is the time step. Variation in r and v with ∆t is graphically presented in Figure. 2.1. In 

molecular dynamics (MD) simulations, controlling temperature and pressure is crucial to mimic real 

systems that are under constant temperature or pressure conditions. Temperature control is typically 

achieved by modifying the velocities of atoms, while pressure control involves adjusting the size of 

the simulation box. A review of commonly used techniques to control temperature and pressure 

follows next. 

 

 

 

 

 

 
Figure 2.1 Change in positions and velocities of atoms with time.  

 



 

 

 

2.1.2 Thermostat 

 

The temperature of a system of atoms is defined as the average kinetic energy of all particles. The 

instantaneous temperature can be given as 

 

𝑇 =
1

𝑁𝑓𝐾𝐵
∑ 𝑚𝑖(𝑣𝑖

𝛼)2𝑖,𝛼     

   (2.4) 

where, Nf is the total translational degrees of freedom of the system, kB is Boltzmann’s constant, mi 

is the mass of atom i and vα
i is the velocity of atom α in i direction. The value of α can be 2 or 3 

depending on the dimensionality of the system. It is not possible to keep the temperature at a fixed 

value during the simulation due to the fluctuations in velocities. Therefore, only the average value of 

temperature can be maintained at a constant value during simulations. The temperature of a system 

depends only on the velocities of atoms as given in Eq. (2.4). Therefore, the temperature of a system 

can be controlled by scaling the velocities of atoms, which is achieved using a thermostat. Anderson, 

Berendsen, and Nose-Hoover thermostats are the most commonly used thermostats.  

Andersen thermostat: The Andersen [81] thermostat is a stochastic thermostat that works by randomly 

selecting a particle and assigning it a new velocity drawn from the Maxwell-Boltzmann distribution 

corresponding to the desired temperature. This method ensures that the system's temperature is 

maintained at the desired value. However, the Andersen thermostat can be computationally expensive 

due to the need for random selection and velocity updates for each particle at every time step [82]. 

Berendsen thermostat: The Berendsen thermostat [83] is a deterministic thermostat that works by 

scaling the velocities of all atoms in the system proportionally to control the temperature. By adjusting 

a coupling parameter, the velocities are rescaled such that the total kinetic energy of the system 

remains constant. The Berendsen thermostat is easy to implement and widely used in MD simulations, 

especially for equilibration and initial relaxation stages. 

Nose-Hoover thermostat: The Nose-Hoover thermostat is considered to be one of the best thermostats 

[84]. It uses a friction factor (µ) to modify the equation of motion so that the system temperature 

converges to the desired temperature. The Nose-Hoover thermostat is more computationally 

expensive than the Berendsen thermostat, but it is also more stable and accurate [85–87].  The µ is 

defined as 



 

 

 𝑑𝜇(𝑡)

𝑑𝑡
=
𝑁𝑓𝐾𝐵

𝑄
(𝑇(𝑡) − 𝑇𝑜) 

       (2.5) 

where T0 and T(t) are the desired and the current temperatures, respectively; Q is the effective mass 

of the thermostat, which determines the strength of thermostat, and is given as 

 𝑄 = 𝑁𝑓𝐾𝐵𝑇0𝜏𝑇
2    (2.6) 

where τT is the specified time constant for temperature fluctuations. The value of τT is generally in 

the order of hundred-time steps to achieve a smooth temperature transition.  

The modified Newton’s equation of motion is given by, 

 
𝑎 =

𝑓𝑡
𝑚
− 𝜇(𝑡)𝑣(𝑡) 

   (2.7) 

Table 2.2 The key differences between the three thermostats: 

Thermostat Type Advantages Disadvantages 

Andersen Stochastic Simple to implement Can be computationally expensive 

Berendsen Deterministic Easy to implement Less accurate than Nose-Hoover 

Nose-Hoover Deterministic Most accurate 
More computationally expensive 

than Berendsen 

 

2.1.3 Pressure Regulation  

 

The pressure of a system of atoms is defined as 

 

𝑃𝑖𝑗 =
1

𝑉
∑[∑(𝑟𝑖

𝛽
− 𝑟𝑖

𝛼)𝑓𝑗
𝛼𝛽
+𝑚𝛼𝑣𝑖

𝛼𝑣𝑗
𝛼

𝑁

𝛽=1

]

𝛼

 

   (2.8) 

where, (𝑖, 𝑗) are directional indices and 𝛽 is a number, assigned to the neighboring atoms that goes 

from 1 to the number of neighboring atoms 𝑁; 𝑟𝑖
𝛼 is the position of atom 𝛼 along the direction 𝑖, and  



 

 

𝑓𝑗
𝛼𝛽

 is the force along direction 𝑗 on atom 𝛼 due to atom 𝛽; 𝑚𝛼𝑣𝑖
𝛼 are the mass and velocity of atom 

𝛼, respectively. 𝑉 is the total volume of the system.  

The Berendsen barostat [83] and the Nosé-Hoover barostat [88] are two commonly used methods to 

control pressure in molecular dynamics simulations. 

The Berendsen barostat is a simple and widely used method that scales the simulation box dimensions 

to control the system pressure. It operates by adjusting the size of the simulation box to achieve the 

desired pressure. However, the Berendsen barostat is known to be less accurate and physically 

realistic compared to other methods, as it does not fully sample the correct statistical ensemble and 

may lead to artificial equilibration behavior. 

On the other hand, the Nosé-Hoover barostat is a more sophisticated and accurate method based on 

extended Hamiltonian dynamics. It introduces additional degrees of freedom to the system to control 

the pressure. The Nosé-Hoover barostat maintains the system pressure at the desired value by 

periodically rescaling the momenta of the fictitious degrees of freedom. This approach more closely 

follows the statistical mechanics principles and provides a more accurate sampling of the isothermal-

isobaric ensemble. 

Both barostat have their advantages and limitations (Table 2.3). The choice of barostat depends on 

the specific requirements of the simulation, such as the desired accuracy, computational efficiency, 

and the nature of the system being studied. Researchers often select the most appropriate barostat 

based on their specific needs and the trade-offs between accuracy and computational cost. 

Table 2.3 Advantages and disadvantages of each barostat 

Barostat Advantages Disadvantages 

Berendsen Simpler, more computationally efficient Less accurate, more likely to 

exhibit artificial equilibration 

behavior 

Nosé-Hoover More accurate, better sampling of 

statistical ensemble, less likely to exhibit 

artificial equilibration behavior 

More complex, less 

computationally efficient 

 



 

 

2.2 Statistical Ensembles 

  

Statistical ensembles represent collections of possible states of a system under specific macroscopic 

constraints, such as fixed temperature and pressure. These constraints dictate the characteristics and 

behavior of the system in statistical equilibrium. The microcanonical ensemble (NVE) is used when 

the number of atoms (N), volume (V), and energy (E) of the system are kept constant. This ensemble 

is particularly useful for studying isolated systems where no exchange of energy or particles occurs 

with the surroundings. In contrast, the canonical ensemble (NVT) is employed when both the number 

of atoms and the volume are fixed, but the system is allowed to exchange energy with the 

surroundings. This is useful for simulating systems under constant volume and temperature 

conditions, which is often encountered in laboratory experiments. Lastly, the isothermal-isobaric 

ensemble (NPT) is used when both the temperature and pressure are fixed, making it suitable for 

simulating systems at a specific temperature and pressure, resembling many real-world experimental 

conditions. Figure 2.2 graphically demonstrate the characteristics of NVE, NVT, and NPT ensembles. 

 

Figure 2.2 Graphical representation of the microcanonical (NVE), the canonical (NVT), and the 

isothermal-isobaric (NPT) ensembles [91]. 

 

In NPT ensemble, temperature and pressure can be controlled by modifying the equation of motion 

according to the Nosé-Hoover thermostat and barostat [89,90]. The resulting system of equations of 

NPT ensemble can be expressed as 



 

 

 
                                        

𝑑𝜇(𝑡)

𝑑𝑡
=
1

𝜏𝑇
2 (
𝑇(𝑡)

𝑇𝑜
− 1), 

            
𝑑𝜂(𝑡)

𝑑𝑡
=

1

𝑁𝑓𝐾𝐵𝑇0𝜏𝑃
2 𝑉(𝑡)[𝑃(𝑡) − 𝑃0], 

𝑑𝑉(𝑡)

𝑑𝑡
= [3𝜂(𝑡)]𝑉(𝑡), 

𝑑𝑟(𝑡)

𝑑𝑡
= 𝑣(𝑡) + 𝜂[𝑟(𝑡) − 𝑅0], 

        
𝑑𝑣(𝑡)

𝑑𝑡
=
𝑓(𝑡)

𝑚
− [𝜇(𝑡) + 𝜂(𝑡)]𝑣(𝑡), 

 

 

   (2.9) 

where, 𝜇 is the friction factor to modify the equation of motion; 𝑇0 and 𝑇(𝑡) are the desired and current 

temperatures, respectively; 𝜏T is the time constant for temperature fluctuations. 𝑃0 and 𝑃(𝑡) are the 

instantaneous and desired pressures, respectively; 𝜏P is the time constant for pressure fluctuations; 𝜂 

is the volume scaling factor; 𝑅0 is the center of mass of the system; 𝑓(𝑡) is the force acting on an 

atom, which is calculated from the gradient of the potential energy as given in (Eqn. 2.1), where the 

potential energy is obtained from a potential field. 

2.3 Stillinger Weber Potential:  

A potential field, also known as a force field, is a mathematical representation of the potential energy 

of a system of interacting atoms in molecular dynamics (MD) simulations. It is a crucial component 

of MD simulations as it determines the forces between atoms, which in turn govern their movements 

and interactions. In a potential field, various parameters such as bond lengths, bond angles, dihedral 

angles, and non-bonded interactions (van der Waals and electrostatic forces) are defined based on 

empirical data and/or quantum mechanical calculations. These parameters are usually derived from 

experimental data and theoretical calculations and are often optimized to reproduce specific 

properties or behaviors of real materials. The accuracy of the MD simulation results heavily relies on 

the accuracy of the potential field used in the simulation. If the potential field accurately describes 

the interactions between atoms, the simulation can provide meaningful and reliable insights into the 

behavior of the system being studied. On the other hand, an inaccurate or poorly parameterized 

potential field can lead to unrealistic or misleading simulation results.  

The Stillinger-Weber (SW) potential is a widely used empirical interatomic potential model for 

describing the interactions between atoms in certain materials. It was introduced by Frank H. 

Stillinger and Thomas A. Weber in 1985 and has been applied to various systems, including 

semiconductors, metals, and covalent-bonded materials like silicon and diamond. 



 

 

The SW potential is a many-body potential, meaning it accounts for interactions between more than 

two atoms at a time (one-, two-, and three-body terms). It is typically used to study materials with 

tetrahedral bonding configurations, such as silicon-based materials and some transition metal 

dichalcogenides (TMDs) like MoS2. 

The general form of the Stillinger-Weber potential is given by: 

 
𝑉𝑆𝑊 =∑[𝐴𝑒(−𝜆𝑟𝑖𝑗) − 𝐵𝑒(−2𝜆𝑟𝑖𝑗) +

𝑞𝑖𝑗 ∗ 𝑞𝑗𝑖

𝑟𝑖𝑗
] 

    (2.10) 

where: 

• A, B, and λ are fitting parameters that determine the strength and range of the interactions, rij 

is the distance between atoms i and j, qij and qji are the charges of atoms i and j, respectively. 

The first two terms represent the short-range repulsive and attractive forces, while the third term 

represents the Coulombic interaction between charges. The Stillinger-Weber potential has been used 

in molecular dynamics simulations to study the mechanical, thermal, and electronic properties of 

materials, particularly those with tetrahedral bonding structures.  

2.3.1 Stillinger Weber (SW) for MoS2: 

 

Several efforts have been made to obtain the parameters of SW potential for MoS2 from different 

experiments and purely atomistic simulations. The parameters of SW potential are found by fitting to 

the experimentally obtained phonon spectrums [91], the energies obtained from molecular dynamics 

simulations based on valence force-field [92], the lattice geometry, elastic constants and phonon 

frequencies obtained from First Principal calculations [93], and the lattice geometry and atomic forces 

obtained from ab-initio molecular dynamics simulations [94]. 

This study focuses on investigating the mechanical properties of pristine and defective monolayer 

MoS2 structures, including their relaxation behavior, using molecular static simulations. The SW 

potential considers all possible interactions between Mo and S atoms [93,94]. It is a many-body 

potential, consisting of one-, two-, and three-body terms, and has been well-fitted to accurately 

represent monolayer MoS2. The main goal of this work is to obtain the elastic constants of monolayer 

MoS2 through molecular static simulations. The accuracy of the computed results depends on the 

parameters used in the simulation. Therefore, the study uses well-parameterized molecular simulation 

techniques that can effectively describe a variety of bulk material properties. By understanding the 



 

 

physical properties and having accurate interatomic potentials, researchers can gain insights into the 

behavior of monolayer MoS2 and potentially control these properties for specific applications. 

The bond interaction by two-body interaction acts towards the bond deformation while the three-

body interaction conducts itself towards the angular rotation. The total potential of a system ϕtot can 

be written as 

 𝜙𝑡𝑜𝑡 =∑∑𝑄2(𝑟𝑖𝑗)

𝑖<𝑗𝑖

+∑∑∑𝑄3(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝛼𝑖𝑗𝑘)

𝑘>𝑗𝑗≠𝑖𝑖

 
      (2.11) 

 

Figure 2.3 Two typical interactions in covalent materials. Each interaction term is described using 

the SW potential. (a) Two-body bond stretching interaction. (b) Three-body angle bending 

interaction. Atom moving directions are depicted by red arrows. rij, r12 and r13 are the distances 

between particles, while de, d1 and d2 are the bond length, respectively. 

The two-body interaction potential, as shown in Figure 2.3,  Q2 takes the following form, 

 

𝑄2(𝑟𝑖𝑗) = 𝑋𝑖𝑗 (
𝑌𝑖𝑗

𝑟𝑖𝑗
4 − 1) 𝑒

(
𝜎𝑖𝑗

𝑟𝑖𝑗−𝑟𝑖𝑗
𝑚𝑎𝑥)

 

       (2.12) 

The three-body interaction potential Q3 in Equation (2.11) is modeled as 

 

𝑄3(𝑟𝑖𝑗, 𝑟𝑖𝑘, 𝛼𝑖𝑗𝑘) = 𝑍𝑖𝑗𝑘𝑒
(

𝜎𝑖𝑗
𝑟𝑖𝑗−𝑟𝑖𝑗

𝑚𝑎𝑥+
𝜎𝑖𝑘

𝑟𝑖𝑘−𝑟𝑖𝑘
𝑚𝑎𝑥)

∗ (𝑐𝑜𝑠𝛼𝑖𝑗𝑘 − 𝑐𝑜𝑠𝛼0,𝑖𝑗𝑘)
2
 

       (2.13) 

where exponential function gives a smooth decay of the potential to zero at the cut-off, which is 

essential to save the energy. Q2 and Q3 represent the two body (bond stretching) and three body (bond 

bending) interactions. The rij, rik and αijk are the pair separations and angle between the separation on 

atom i respectively. The potential parameters are X, Y, Z, σ, along with rmax cutoff radii and 



 

 

equilibrium angles and they rely upon on the atoms interacting with each other, for instance, Xij is the 

parameter for X for the pairwise interaction between atom i of category I and atom j of category J. 

There are five unknown geometrical parameters, i.e., Yij and σij in the two-body Q2 term and σij, σik, 

and α0 in the three-body Q3 term, and two energy parameters ι and υ. 

The parameters Yij and σij in  Q2  can be described as  

 
𝜎𝑖𝑗 = 

−4𝑌𝑖𝑗(𝑑𝑒 − 𝑟𝑚𝑎𝑥)
2

𝑌𝑖𝑗𝑑𝑒 − 𝑑𝑒
5  

    (2.14) 

where de is the equilibrium bond length from experiments. Hence, there is only one free geometrical 

parameter left in Q2. In other words, (Eqn 2.14) ensures that the bond has an equilibrium length of de 

and the Q2 interaction for this bond is at the energy minimum state at the equilibrium configuration. 

The energy parameters Xij and Zij in the SW potential are. 

 
𝑋𝑖𝑗 = 

𝑍𝑖𝑗𝑟𝑖𝑗

𝜍𝑒
[

𝜎𝑖𝑗
𝑑𝑒− 𝑟𝑖𝑗

𝑚𝑎𝑥]

 
    (2.15) 

and  

 
𝑍𝑖𝑗 = 

𝑍𝑖𝑗𝛼𝑑1𝑑2

2𝑠𝑖𝑛2𝛼0𝑒
[

𝜎𝑖𝑗
𝑑1− 𝑟12

𝑚𝑎𝑥 + 
𝜎𝑖𝑘

𝑑2− 𝑟13
𝑚𝑎𝑥 ]

 
   (2.16) 

 

where the coefficient  ς in Eqn 2.15 is 

 

𝜍 = [
𝜎𝑖𝑗

(𝑑𝑒 − 𝑟𝑖𝑗
𝑚𝑎𝑥)

2]

2

 (
𝑌𝑖𝑗

𝑟𝑖𝑗
4) + [

2 𝜎𝑖𝑗

(𝑑𝑒 − 𝑟𝑖𝑗
𝑚𝑎𝑥)

3]

2

 (
𝑌𝑖𝑗

𝑟𝑖𝑗
4 − 1)

+ [
𝜎𝑖𝑗

(𝑑𝑒 − 𝑟𝑖𝑗
𝑚𝑎𝑥)

2]

2

 (
8𝑌𝑖𝑗

𝑑𝑒
5 ) + (

20𝑌𝑖𝑗

𝑑𝑒
6 ) 

 

    (2.17) 

 



 

 

The bond length of the arms for the angle are d1 and d2, which are from experiments or other 

theoretical calculations.  

In the SW potential, bond stretching interaction is described by (Eqn 2.12), and angle bending 

interaction is described by (Eqn 2.13). The potential parameters are determined in three steps: 

1. the interaction cut-offs (rij
max, r12

max, and r13
max) are determined geometrically by the 

equilibrium configuration of the material. The bond length (de, d1, and d2) and the angle (α0) 

are also from the experiment or other theoretical calculations.  

2. the geometrical parameters σij in the two-body term and σij and σik in the three-body term 

are determined by Equation (2.14), by assuming that each two-body SW term is at equilibrium 

separately.  

3. the energy parameters (Xij and Zij) are determined by Eqn. 2.15 and 2.16, based on the 

Valence-force-field (VFF) model [95]. 

The above derivation shows that there is no constraint imposed on the parameter Yij in the 

linear regime. The only condition for χ to satisfy is that Yij < de
4 , so that σij > 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

2.4 Molecular Dynamics Simulation Procedure  

 

 

 
 

Figure 2.4 Graphical representation of the MD simulation procedure. 

Figure 2.4 graphically demonstrates the procedure of Molecular Dynamics (MD) simulation. In MD 

simulations, the initial positions of atoms are defined such that they are slightly away from their 

known equilibrium positions. This initial displacement allows the atoms to explore different 

configurations and eventually reach their global equilibrium positions during the relaxation period. 

Additionally, the initial velocities of atoms are typically assigned randomly to simulate the thermal 

motion of the atoms at the desired temperature. However, the velocities are later rescaled by the 

thermostat during the simulation to achieve and maintain the desired temperature throughout the 

simulation. 

The MD simulation loop, as shown in Figure 2.4, continues to run until a termination condition is 

met. The termination condition is often set as the number of iterations or time steps specified for the 



 

 

simulation. During each iteration, the positions and velocities of the atoms are updated based on the 

equations of motion, which are typically Newton's equations of motion in classical MD simulations. 

The simulation proceeds by calculating the forces acting on each atom based on the interactions 

defined by the interatomic potential, such as the Stillinger-Weber potential mentioned earlier. The 

forces determine how the atoms move, and the integration of the equations of motion allows the atoms 

to propagate in time. The trajectory of the atoms' positions and velocities is continuously updated 

throughout the simulation. 

2.5 Molecular Dynamics Simulator  

 

All the molecular dynamics simulations in this thesis are performed using the large-scale 

atomic/molecular massively parallel simulator (LAMMPS) [107]. LAMMPS is a free and open-

source package developed by Sandia National Laboratories. The package can be used as a parallel 

particle simulator in the atomic, meso, or continuum scales [108]. The simulation procedure in 

LAMMPS can be divided into four sections: (i) Initiation (ii) Atom definition (iii) Simulation settings, 

and (iv) Running. Under initiation, units and boundary conditions of the simulation are defined. 

Various unit systems, such as SI, cgs, and metal, are available in LAMMPS. The metal unit system 

is used in SW potential field. In metal units, the units of distance, time, and energy are Angstroms, 

picoseconds, and electron-volts, respectively. Boundary conditions can be defined as either periodic 

or non-periodic. The input file should be named as in.filename. Coordinates of the atoms (x, y and z) 

and the atom types (e.g., molybdenum, sulfur) are defined under atom definition part. Atom 

coordinates can also be defined in a separate file, which is generally named as data.filename. This 

file is called when the main input file (named as in.filename) is executed. 

Under the third section, potential field coefficients, simulation parameters, and output options are 

defined. The basic simulation parameters, such as time-step, temperature, and pressure control, are 

defined in this section. Many commonly used pressure and temperature controlling algorithms, such 

as Berendsen and Nosé-Hoover are implemented in LAMMPS. In addition, Microcanonical, 

Canonical, and isothermal-isobaric ensembles are also implemented in the package. During a 

simulation, time, and spatial averages of physical quantities, such as temperature, pressure, and 

energies, can be calculated. These quantities can be taken as outputs in a separate output file at 

specified time intervals. The final section is running the simulation. During a simulation, the 

simulation domain can be deformed by appropriately changing the dimensions of the domain, and the 

simulated nanostructure can also be attached to the simulation box. Therefore, with the simulation 

domain, the nanostructure also deforms, providing a method to apply strain into a nanostructure. 

Output of the simulation (e.g., stress, energy, temperature) is written to an output file named as 

log.lammps.  



 

 

2.5.1 Molecular statics  

 

Molecular statics is a branch of classical atomistic simulations that focuses on studying the relaxed 

configuration of atoms in a system at zero temperature [96]. In molecular statics simulations, the 

equilibrium structure of atoms is determined by minimizing the potential energy of the system. The 

goal is to find the most stable arrangement of atoms in the absence of thermal motion. There are 

several energy minimization methods used in molecular statics simulations, including conjugate 

gradient, steepest descent, and Newton-Raphson. These methods are employed to iteratively adjust 

the positions of atoms in order to reach the minimum energy state. The minimization process 

continues until a stable configuration is obtained where the forces on each atom are close to zero, 

indicating that the system has reached a local minimum on the potential energy surface. 

In the context of the thesis, both the conjugate gradient and steepest descent methods are utilized to 

relax the defect containing monolayer MoS2 sheet generated in Chapter 3. These methods are 

commonly used in molecular statics simulations to efficiently find the equilibrium structure of atoms 

with defects. The conjugate gradient method is an optimization technique that uses conjugate vectors 

to iteratively update the atomic positions in a way that converges to the minimum energy 

configuration. It is known for its rapid convergence and efficient utilization of computational 

resources. On the other hand, the steepest descent method is a simple and straightforward 

optimization approach that involves taking steps in the direction of the steepest energy decrease. 

Although it may take more iterations to converge compared to the conjugate gradient method, it is 

still a widely used method due to its simplicity and ease of implementation. 

Graphically, energy minimization is the process of searching for the configuration of atoms (x) from 

initial configuration (x0) that minimizes the potential energy function, U(x). There are two major 

components of this searching process that differentiate between energy minimization methods. The 

first component is the direction of the search, d, and the second component is where to stop searching 

along that direction and look for a new direction. The first component, direction of the search, is the 

main difference between conjugate gradient and steepest descent methods. However, the search 

direction at the first step of both methods is identical. From calculus, the gradient always points 

toward the direction of steepest increase of that function. Therefore, the negative of the gradient 

points in the direction that steepest decrease of that function. For atomistic simulations, the negative 

of the gradient of the potential energy, U(x), is the force vector, F. Thus, the position after the first 

searching step can be expressed as, 



 

 

 𝑥1 = 𝑥0 + 𝛼𝑓0      (2.18) 

where x0, x1 are the configuration at step 0 and 1, f0 is the force unit vector at step 0,  is the distance 

travel along the force vector direction, which is the second component. In both methods,  is chosen 

to minimize the potential energy along the force vector direction via a line search algorithm. There 

are three different line search methods incorporated in LAMMPS: backtrack, quadratic, and force 

zero, which the backtrack line search algorithm set as default. The result of choosing  that way is 

the orthogonality of the previous search direction with the gradient direction of the next step. For 

steepest descent method, the search direction is always defined as the force vector direction. As a 

result, shown in Figure 2.5, their successive search directions are always orthogonal, which 

potentially leads to slow convergence for ill-conditioned systems. To avoid the repetition in the search 

direction, new search directions are constructed in a way that they are conjugate with previous search 

direction, 

 𝑑𝑚+1 = 𝑓𝑚 + 𝛽𝑚+1𝑑(𝑚)     (2.19) 

where  is the parameter to ensure the conjugate among all of the search directions. For nonlinear 

conjugate gradient method, there are 3 well known ways to compute : Fletcher-Reeves, Polak-

Ribiere, and Hestenes-Stiefel. The Polak-Ribiere formula has a faster rate of convergence [79] and is 

the method incorporated in LAMMPS: 

 
𝛽𝑚+1
𝑃𝑅 =

𝑓𝑚+1
𝑇 (𝑓𝑚+1 + 𝑓𝑚)

𝑓𝑚𝑇𝑓𝑚
 

     (2.20) 

However, the Polak-Ribiere could cycle infinitely in some cases [78]. Typically, when 𝛽𝑚+1
𝑃𝑅 < 0, the 

conjugate gradient method is restarted with the first direction search using the steepest descent. 



 

 

 

Figure 2.5 Graphical representation of (a) steepest descent method and (b) conjugate gradient 

method [99] 

 

2.5.2 Uniaxial Tensile Test/ Molecular mechanics method of generating elastic tensor for 

MoS2. 

 

In this section, a uniaxial tensile test is performed on the MoS2 sheet shown in Figure 2.6 to 

demonstrate the simulation procedure of LAMMPS. The size of the MoS2 sheet is ~50Å × 50 Å with 

1008 carbon atoms.  

The coordinates of the Mo and S atoms in MoS2 sheet are obtained from the crystallographic 

information file. The simulation temperature is 300 K, and the MoS2 sheet is allowed to relax for 30 

ps before applying strain. The strain rate and time-step are 0.001 ps-1 and 1 fs, respectively.  

 

 

Figure 2.6 MoS2 sheet used to demonstrate the simulation procedure in LAMMPS. 



 

 

Figure 2.7 shows the MD simulation results, where Figure 2.7(a) shows the variation of potential 

energy per atom during the relaxation period. Potential energy significantly changes at the beginning, 

and the system reaches equilibrium after about 10 ps. Even after reaching the equilibrium, the 

potential energy fluctuates around a central value due to kinetic energy of atoms. The average 

potential energy during 20 ps to 30 ps could be taken as the equilibrium potential energy, which is -

7.389 eV. Figure 2.7(b) shows the variation of potential energy per atom during the tensile test. 

Fracture occurs at a strain of 0.217, and the potential energy per atom at fracture is -2.71 eV. 

 

 

 

As discussed in Chapter -1, The family of 2D materials offers a full spectrum of physical properties, 

from conducting graphene to semiconducting MoS2 and to insulating h-BN. Moreover, the 2D crystal 

structures render a unique combination of mechanical properties, with high in-plane stiffness and 

strength but extremely low flexural rigidity. Together, the 2D materials are promising for a wide 

range of applications. Here we study related to mechanical properties of 2D monolayer MoS2 

material. We emphasize how mechanics is indispensable in the study of mechanical properties 

including defects and antisite defects which influence and help to design the nanostructures. During 

synthesis defects are bound to happen and the relationships between the MoS2 nanosheet (pristine 

and with defects) are of structural features of interest, the effect of defects is crucial to study for the 

designing of nanomaterial. In this work, quantitative values for mechanical properties are predicted 

as a function of these structural features in the atomistic models. Although time dependence is not 

considered directly here, these molecular structural features are known to vary with defects and 

exposure considered. Therefore, effects of defects on these monolayer MoS2 models are studied. 

The atomistic modeling of materials for calculating mechanical properties has been researched for 

several decades. A static method was developed early on using molecular mechanics (MM) 

Figure 2.7 (a) Variation of potential energy (PE) per atom during relaxation period. 

(b) Change of PE per atom with strain. 



 

 

techniques [13]. Stress-strain simulations in molecular dynamics (MD) have been employed for some 

time [14]. However, performing these simulations is not a trivial task. It can be difficult to obtain 

mechanical properties from atomistic simulation that compare well with experimentally measured 

values due to the difficulty of preparing the models and the various parameters involved [15, 16]. A 

comparably high rate of strain is necessary in these simulations due to the short time scales of MD 

simulations as compared to experimentally accessible time scales. Atomistic MD simulations 

typically employ the integration of time steps 1 fs (femtosecond) in duration. A feasible 

(computationally affordable) run might employ 105 to perhaps 106 - time steps, which would be a 

duration of 102 -103 ps. 

At 0 K, all 2D relative components of the stiffness matrix can be determined from the static method 

using eqn. 

 𝜕2𝑈

𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙
=
𝜕𝜎𝑖𝑗

𝜕𝜀𝑘𝑙
 

    (2.21) 

where U is the potential energy.  

This approach requires a deformation of an energy-minimized structure in the direction of interest 

followed by a second energy minimization. Deformations of 1.0 × 10−6 S-1, 5.0 ×10−7 S-1, and 1.0 × 

10−7 S-1, were tested to ensure the deformation choice did not affect the final results. Elastic properties 

were obtained using a value of 5.0 × 10−7 S-1. 

2.6 Evolutionary Optimization 

 

 Optimization, at its core, involves the process of selecting the most favorable choice from a 

range of available options according to specific criteria. There are primarily two categories of 

optimization methods: local optimization methods and global optimization techniques. 

• Local Optimization Methods: These methods typically converge to a local optimum. They 

heavily rely on the initial values provided to the optimization algorithm. Consequently, the 

results achieved are greatly influenced by the starting point chosen. 

• Global Optimization Techniques: In contrast, global optimization methods, often based on 

heuristics, are more inclined to search for the global optimum. These techniques are 

particularly suitable for multimodal functions where there are multiple peaks or valleys, 

making it challenging for standard algorithms to pinpoint the global optimum. 

Many optimization techniques are derived from biological principles, such as natural selection, 

learning processes, and probabilistic rules. Evolutionary algorithms, proposed by Michalewicz in 



 

 

1996 [97], and particle swarm optimization (PSO) developed by Kennedy and Eberhart in 2001 [98], 

are examples of such techniques. These bioinspired approaches are adept at handling multimodal 

optimization problems in various fields, including mathematics and engineering. 

However, there is no one-size-fits-all solution when it comes to selecting the best optimization 

technique. Each algorithm possesses its own set of strengths and weaknesses. The performance of 

these algorithms is heavily reliant on the nature of the optimization problems, the constraints 

involved, and the specific parameters of the algorithms used. 

For instance, the evolutionary algorithm (EA) is inspired by the mechanisms observed in the 

evolution of species. It simulates the natural process of evolution—like selection, crossover, and 

mutation—to explore and search the solution space for optimal solutions. 

Selecting the most appropriate optimization technique depends on the specific problem at hand. 

Understanding the characteristics of the problem, the nature of the constraints, and the behavior of 

different algorithms is crucial in deciding which optimization method might be the most effective for 

a given scenario. Tailoring the choice of method to suit the unique features of the problem often 

yields more successful optimization outcomes. 

The implementation of the Evolutionary Algorithm (EA) used in this work is outlined in the provided 

flowchart shown in Figure 2.8. The algorithm initiates by creating an initial population of individuals, 

each representing a potential solution. These individuals are generated in a manner that aligns with 

the specific needs of the problem. The creation of the initial population can occur in a random or 

ordered manner, based on the requirements of the problem being addressed. 

An individual within this EA framework consists of chromosomes, with each chromosome 

representing a single solution. Typically, in applications of EA, individuals are composed of one 

chromosome, denoted as ch, with arrays of genes (gi) representing design variables. These genes 

often carry coded design variables, but in this particular approach, floating-point genes were utilized. 

As a result, additional coding to represent these design variables was not necessary, as the floating-

point representation sufficed for the purpose of the algorithm. 

This means that the genetic structure within this EA directly represents the parameters of the problem 

without the need for additional encoding or transformation of the genes. Consequently, the floating-

point representation of genes enables a more direct translation and manipulation of the parameters, 

simplifying the implementation of the EA for this specific problem context. 

In this particular implementation of the Evolutionary Algorithm, after the creation of individuals and 

the establishment of their genetic structure representing the solution space, the next step involves the 

evaluation of these individuals. 



 

 

• Molecular Dynamics (MD) Simulations and Fitness Evaluation: For each individual 

within the population, MD simulations are conducted based on the atomic structure defined 

by their genes. Subsequently, individual fitness functions are calculated, reflecting the 

suitability or quality of the solution represented by each individual. 

• Selection Process: The selection phase involves choosing individuals for the next iteration 

based on their fitness values. The probability of an individual's survival in the selection 

process is directly linked to the value of their fitness function. Higher fitness indicates a higher 

likelihood of survival and reproduction for the next generation. 

• Ranking Selection: Ranking selection is performed by assigning a rank value to each 

individual based on their fitness score. Better fitness scores correspond to higher rank values, 

while lower fitness scores are assigned lower ranks. This step segregates individuals based on 

their fitness performance. 

• Offspring Generation: New individuals for the offspring generation are drawn based on their 

rank value. Individuals with higher ranks have a higher probability of being selected to 

produce the next generation. 

• Termination Condition and Evolutionary Operators: The iterative process continues until 

the termination condition is met, often specified by a maximum number of iterations. If the 

termination condition is not satisfied, evolutionary operators are used to modify the genes of 

the individuals. The evolutionary operators utilized in this implementation include uniform 

and Gaussian mutation, as well as simple and arithmetic crossovers. These operators allow 

for the introduction of genetic diversity by altering the genetic structure of individuals, 

creating new variations that might potentially improve the solution space. 

This iterative process—consisting of selection, reproduction, and genetic alteration—is repeated until 

the termination condition is reached, thereby evolving, and refining the population of individuals with 

each iteration. The introduced genetic variations allow for exploration of the solution space, 

enhancing the likelihood of finding optimal or near-optimal solutions to the optimization problem at 

hand. 

 

 



 

 

 

Figure 2.8 Evolutionary algorithm flowchart. 

 

In the context of the EA discussed, the objective function, also known as the fitness function, is 

calculated for each chromosome or individual in the population. The fitness function is derived from 

the direct problem solution provided by each individual, reflecting the optimization goal of the 

problem at hand. 

Given the substantial number of chromosomes within the population and the numerous iterations of 

the evolutionary algorithm, there is a considerable volume of direct problems that need to be solved 

during the optimization process. This extensive computation demands a significant amount of 

computational resources and time. 

To minimize the overall optimization time or wall time, a parallel computing approach was employed. 

This parallel approach involves splitting the computational workload across multiple processors or 

computational units, running simultaneous calculations, and aggregating the results. 

By utilizing parallel computing, the computation time can be significantly reduced. This strategy 

allows for more efficient use of computational resources, accelerating the optimization process by 

distributing the workload across multiple cores, processors, or even separate computational systems. 

As a result, it enables quicker computation of the fitness function for each individual in the EA, 

ultimately contributing to faster convergence and optimization of the solution space. 

 



 

 

2.7 Evolutionary Optimization as a Paradigm for Computational Search 

 

Inspired by the Darwinian principle of natural selection, Evolutionary Computation (EC) has emerged 

as a powerful optimization technique, demonstrating remarkable success in tackling complex real-

world problems [99,100]. A diverse range of engineers and scientists have harnessed the potential of 

Evolutionary Algorithms (EAs), a promising set of stochastic search algorithms, to address some of 

the most challenging optimization problems. EC has firmly established itself as a prominent area of 

computer science and optimization, gaining significant traction in recent years. Within the past 

decade, solving optimization problems using EAs has evolved into a crucial application area of EC. 

EC's inherent parallelism, coupled with intelligent attributes such as self-organization, adaptation, 

and self-learning, has enabled its successful application to a wide spectrum of problems where 

classical approaches are either impractical or yield suboptimal results. The growing interest in EC 

has been particularly pronounced in recent years [101,102]. 

The remarkable success of EC gained widespread recognition in the 1980s, when it was employed to 

solve exceptionally complex optimization problems across various disciplines, cementing its 

undeniable breakthrough as a problem-solving methodology [103]. This breakthrough has been 

manifested in the burgeoning number of publications in the field, accompanied by a corresponding 

surge in specialized conferences and journals. Despite the existence of these dedicated venues, a 

substantial body of application-specific EC research remains scattered across the publications of 

diverse disciplines, including Operations Research (OR) / Optimization, and is often presented at 

their respective conferences, further highlighting the general applicability and success of EC methods. 

The application of EC to optimization problems is known as Evolutionary Optimization (EO). The 

widespread popularity of EO across various disciplines has prompted us to bring it to the attention of 

the OR/optimization research community. Our experience indicates that OR/Optimization researchers 

and practitioners hold diverse views on the utilization of EC methods for solving optimization 

problems. OR/Optimization researchers and practitioners frequently employ heuristics to identify 

near-optimal solutions for a multitude of large and complex problems. EC methods, at their core, are 

heuristic. Unlike conventional optimization techniques, EC methods lack a strong mathematical 

foundation, and guaranteeing algorithm convergence (for all problems) within a finite number of steps 

poses a challenge. 

 



 

 

2.7.1 Evolutionary Computation as a Search Paradigm 

Evolutionary computation (EC) is an interdisciplinary field that draws inspiration from biological 

evolution to design computational algorithms. It encompasses techniques that mimic natural 

processes like selection, mutation, and recombination to solve complex optimization problems. EC 

has borrowed terminology from fields like molecular evolution, population genetics, and 

immunology to reflect its connections. However, its primary goal is not to create biologically accurate 

models but rather to develop robust and efficient computational systems for solving real-world 

problems. Evolutionary algorithms (EAs) are a type of stochastic search procedure that iteratively 

generates and tests candidate solutions until a satisfactory solution is found. They differ from 

conventional generate-and-test algorithms in that they maintain a population of solutions and apply 

operators like selection, mutation, and recombination to improve the solutions over time [104]. 

• Initialization: Generate an initial solution and set it as the current solution. 

• Perturbation: Generate a new solution from the current solution by making a small change. 

• Evaluation: Test whether the new solution is better than the current solution. 

• Selection: If the new solution is better, accept it as the current solution. Otherwise, keep the 

current solution unchanged. 

 Repeat steps 2-4 until a satisfactory solution is found. 

Different algorithms use different strategies for the generation of the initial solution, the perturbation 

and acceptance of the current solution. 

EAs have two prominent features which distinguish themselves from other search algorithms. First, 

they are all population-based (consider a set of possible solution points in contrast to single solution 

point in conventional optimization). Second, there is communications and information exchange 

among individuals in a population. A general framework of evolutionary algorithms can be 

summarized as follows. 

 1. Set i = 0. 

 2. Generate the initial population P(i) at random. 

 3. REPEAT 

  (a) Evaluate the fitness of each individual in P(i). 



 

 

  (b) Select parents from P(i) based on their fitness. 

  (c) Apply search operators to the parents and produce generation P(i+1). 

 4. UNTIL the population converges, or the maximum time is reached 

Evolutionary algorithms (EAs) are population-based search algorithms that mimic natural selection 

to solve complex problems. They use operators like crossover and mutation to generate new solutions 

and selection to choose the best ones. EAs offer flexibility in search operators and selection 

procedures, providing opportunities for researchers in Operations Research and Optimization to 

contribute to the field of evolutionary computation [104]. Evolutionary computation can be divided 

into four major branches which are briefly discussed in the following section. 

2.7.2. Evolutionary Algorithm Variants 

 

Evolutionary computation (EC) encompasses a diverse range of algorithms inspired by the principles 

of natural evolution, encompassing four major branches: evolution strategies, evolutionary 

programming, genetic algorithms, and genetic programming. These branches differ in their 

fundamental design principles, leading to variations in their representations of potential solutions and 

the operators used to modify these solutions. Representation and search are two fundamental aspects 

of EC that significantly influence the effectiveness of these algorithms. Different EC algorithms 

employ distinct representations for individuals, the entities that represent potential solutions to the 

problem being addressed. These representations can broadly be categorized into three main types: 

lists, trees, and graphs. For mathematical optimization problems, lists are the most prevalent 

representation scheme. Lists encompass various forms, including binary strings, real-valued vectors, 

integer vectors, and symbolic strings. The choice of representation significantly impacts the problem-

solving capabilities of EC algorithms [97]. 

Search operators play a pivotal role in the reproduction of offspring, the process of generating new 

solutions from existing ones. These operators mimic the mechanisms of natural selection, driving the 

search towards improved solutions. Common search operators include crossover, mutation, and 

selection. Crossover combines two parent solutions to create a new offspring solution, inheriting 

characteristics from both parents. Mutation introduces random modifications to a solution, potentially 

leading to novel and beneficial changes. Selection determines which solutions are more likely to be 

selected for reproduction, ensuring that the search focuses on promising areas of the solution space. 

The judicious selection of representation, search operators, and selection scheme is crucial for the 

success of EC algorithms. The interplay between these elements determines the effectiveness of the 

algorithm in navigating the search space and ultimately converging to optimal solutions. The 



 

 

appropriate choice of these components depends on the specific problem being addressed, its 

characteristics, and the desired outcomes. 

There are four main branches of EAs: evolution strategies (ES), evolutionary programming (EP), 

genetic algorithms (GAs), and genetic programming (GP). Each branch has its own unique 

characteristics, but they all share a common framework based on the principles of natural evolution. 

Evolution Strategies (ES): ES was first introduced by Rechenberg and Schwefel in 1965 as a 

numerical optimization technique. They are similar to EP in that they use real-valued vectors to 

represent individuals and Gaussian mutation. However, they differ in their selection and 

recombination operators. ES uses deterministic selection and discrete or intermediate recombination, 

while EP uses probabilistic competition and forgoes recombination [105,106]. 

Evolutionary Programming (EP): EP was developed by Fogel and others in the mid-1960s as a 

means to achieve artificial intelligence [107]. It has been applied to combinatorial and numerical 

optimization problems. EP is similar to ES in its algorithmic structure, using real numbers as 

individuals, Gaussian mutation, and self-adaptation. However, EP differs in its selection and 

recombination. EP employs probabilistic competition (tournament selection) as its selection 

mechanism and forgoes recombination [108]. 

Genetic Algorithms (Gas): GAs were pioneered by Holland and his student Jong in 1975 [109,110], 

although some ideas emerged earlier in the context of genetic system simulation. They were initially 

proposed as adaptive search algorithms but are now primarily used for global optimization in 

combinatorial and numerical problems. GAs are the most widely known branch of EAs. They differ 

significantly from ES and EP in individual representation and search operators. GAs emphasizes 

genetic encoding of potential solutions into chromosomes and apply genetic operators to these 

chromosomes. This effectively transforms the original problem from one space to another. Genetic 

representation is crucial for the success of GAs. While a simple GA employs binary representation, 

one-point crossover, bit-flipping mutation, and roulette-wheel selection, numerous variations exist. 

Recombination (crossover) plays a major role in GAs, while mutation serves as a background 

operator [97]. 

Genetic Programming (GP): GP is considered a specialized sub-branch of GAs. It was developed 

by Koza in 1992 as an application of GAs to evolve tree-structured chromosomes [111]. Historically, 

these trees represented LISP programs. GP utilizes both crossover and mutation. Due to its infrequent 

application in mathematical optimization, GP is not a primary focus of this discussion. 



 

 

The term "evolutionary algorithms" has gained traction among researchers to encompass ES, EP, and 

GAs, given their shared computational framework. This perspective is adopted in this work. 

                         2.7.3 Harnessing Nature's Design Principles: Why Evolutionary Algorithms 

Excel at Optimization 

EC is a powerful tool for optimization, especially for problems that conventional methods struggle 

with. It offers robustness, versatility, parallelism, and adaptability, but lacks a rigorous theoretical 

foundation and can be computationally expensive. The choice between EC and conventional 

techniques depends on the specific problem requirements. 

Properties of Functions: In EC, the properties of functions, such as convexity, concavity, and 

continuity, are not crucial considerations. Unlike conventional mathematical programming 

techniques, EC does not rely on these properties for optimization. Instead, EC randomly generates an 

initial population of solutions and iteratively produces new generations of solutions using simple 

rules [112]. This approach is applicable regardless of whether the function is differentiable or not. 

While EC and conventional search procedures share the concept of generate-and-test algorithms, their 

specific search techniques differ significantly. EC's search mechanism is not directly comparable to 

conventional methods like the cyclic coordinate method, the method of Hooke and Jeeves, and 

Rosenbrock's method. However, EC allows for the incorporation of conventional search procedures 

to enhance its efficiency. This approach is known as hybrid EC. 

Single best solution: Unlike conventional mathematical programming techniques that provide a single 

best solution,  EC offers the flexibility to explore multiple solutions, including the second best, third 

best, and so on. This is particularly beneficial in scenarios where decision-makers need to evaluate a 

range of potential solutions rather than just the absolute optimum [113]. For instance, in bidding 

problems, decision-makers may be interested in considering the second best and third best bids 

alongside the optimal bid. EC's ability to provide multiple solutions allows for a more comprehensive 

evaluation and decision-making process. 

Infeasibility: In contrast to mathematical programming techniques, which struggle with infeasible 

optimization problems, EC offers a more flexible approach. EC can identify infeasible constraints 

and suggest minimal changes to the problem structure, effectively making it feasible. While penalty 

function approaches are commonly used in EC for constrained optimization problems, alternative 



 

 

methods such as repairing or rejecting infeasible solutions are also available [114]. EC's ability to 

handle infeasibility makes it a valuable tool for a wider range of optimization scenarios [115,116]. 

Domain Knowledge: EAs are relatively easy to implement due to their lack of reliance on extensive 

domain knowledge. However, incorporating domain knowledge into EAs can further enhance their 

performance [104]. This can be achieved by replacing the search component in EAs with conventional 

search techniques, refining the final EA solutions using local search techniques, or redesigning the 

initial population generation and selection procedures based on conventional optimization concepts. 

Robustness of EC Algorithms: A common framework for evolutionary algorithms can be applied to 

a wide range of single-objective constrained mathematical programming models. A single penalty 

function-based evolutionary algorithm can be used to solve various types of linear, integer, and 

nonlinear programming models [114,117]. However, the optimal algorithmic parameters for the 

evolutionary algorithm may vary depending on the specific model being solved. In contrast, 

conventional optimization theory requires learning numerous specialized techniques to solve different 

classes of optimization problems. For instance, linear programming problems require methods like 

the simplex method or the interior point method [118,119], while integer programming problems 

often involve the branch-and-bound method or the cutting plane method [120]. Nonlinear 

programming problems also have their own set of solution techniques, with different methods 

applicable to different classes of nonlinear problems [121]. 

In essence, evolutionary algorithms offer a more versatile and adaptable approach to solving a broad 

range of optimization problems compared to conventional optimization theory, which often requires 

specialized techniques for specific problem types. 

Constrained Handling and Penalty Methods: Conventional optimization using the penalty function 

method involves repeatedly solving a modified version of the original problem, with the penalty 

parameters constantly changing [112]. This process can be computationally expensive. In contrast, 

EC utilizes the penalty function method more efficiently by solving the modified problem only once 

and adapting the penalty parameters throughout the generations. This approach significantly reduces 

computational overhead [114]. 

 

 

 



 

 

Table 2.4 Differences between conventional optimization and EC in using the penalty function 

method: 

Feature Conventional Optimization 
Evolutionary Computation 

(EC) 

Computational efficiency Less efficient More efficient 

Number of times modified problem 

is solved 
Repeatedly Only once 

Penalty parameter adjustment 
Requires repeated problem-

solving 

Adaptive adjustment during 

generations 

 

Exploration and Exploitation: EAs are a versatile class of search algorithms that effectively balance 

exploration and exploitation of the search space [see p-15 of [114]]. This balance enables them to 

efficiently navigate complex landscapes and avoid getting trapped in local optima, making them 

particularly well-suited for solving multimodal optimization problems. 

Computational Time: EAs are particularly advantageous for their ability to provide quick 

approximate solutions to optimization problems. They typically exhibit rapid improvement in the 

initial generations [122], leading to near-optimal solutions within a reasonable timeframe, even for 

challenging problems [123]. This makes EAs a valuable tool for tackling complex optimization tasks. 

Multiobjective Optimization: EAs are particularly well-suited for multiobjective optimization due to 

their ability to simultaneously optimize conflicting objective functions and generate a diverse set of 

non-dominated solutions in a single run [124–126]. While conventional optimization techniques can 

be used to solve certain multiobjective problems by creating a composite objective function using 

weighted linear combinations of individual objective functions, this approach is limited to problems 

with continuous and monotonically increasing or decreasing Pareto frontiers. EAs, on the other hand, 

are more versatile and can handle a wider range of multiobjective problems, including those with 

non-continuous, non-uniform Pareto frontiers, complex, periodic, or multimodal functions [127]. 

Table 2.5  Differences between EAs and conventional optimization for multiobjective optimization: 

Feature Evolutionary Algorithms (EAs) Conventional Optimization 

Pareto frontier 

exploration 

Capable of handling diverse Pareto 

frontiers 

Limited to continuous and monotonically 

increasing/decreasing Pareto frontiers 



 

 

Function 

complexity 

Can handle complex, periodic, and 

multimodal functions Limited to well-behaved functions 

Solution diversity 

Generates a diverse set of non-

dominated solutions 

Can be limited in generating diverse 

solutions 

 

Starting Solution: Unlike conventional optimization techniques, which often require specific methods 

to generate initial solutions, EC algorithms generally rely on random population generation. This 

eliminates the need for specialized methodologies and simplifies the initialization process. 

Harder Problems: Conventional optimization algorithms find integer programming and nonlinear 

programming to be more complex than linear programming, but EC algorithms can handle these 

problems with relative ease. Additionally, multi-modal problems are less likely to trap EC algorithms 

in local optima [128]. 

Optimization under Changing and Dynamic Environments: EC techniques are well-suited for 

handling optimization problems in changing environments, where the optimal solutions evolve over 

time. These problems, such as on-line data mining, job scheduling, investment portfolio evaluation, 

and robot path determination [129], cannot be effectively solved using conventional optimization 

methods. EC's ability to continuously adapt and learn from changing conditions makes it a valuable 

tool for optimization in dynamic environments [130]. 

 

                  2.7.4 Evoking Evolutionary Wisdom: Identifying the Ideal Conditions for 

Evolutionary Algorithm Application 

 

While evolutionary computation (EC) methods may not be the most efficient approach for linear 

programming problems due to the existence of powerful conventional algorithms, they offer 

significant advantages in tackling complex real-world optimization problems. EC's ability to handle 

nonlinearity, multimodality, and dynamic environments makes it a valuable tool for solving problems 

that challenge conventional methods. 

Knowledge of Optimization: Evolutionary computation (EC) offers a valuable approach to 

optimization problems even for users with limited or no mathematical knowledge. Unlike 

conventional optimization methods, EC doesn't require extensive mathematical expertise, making it 

more accessible to a wider range of users. 

Ranked Solutions: Evolutionary computation (EC) is a powerful tool for generating ranked solutions, 

providing decision-makers with a range of optimal choices rather than just a single best solution. This 



 

 

makes EC particularly valuable in scenarios where multiple perspectives or preferences need to be 

considered. 

Multi-modal Problems: For multi-modal problems with multiple peaks, evolutionary computation 

(EC) methods have a lower chance of getting stuck in local optima compared to conventional 

optimization techniques. EC’s ability to explore the search space effectively prevents it from getting 

trapped in suboptimal solutions. 

Quick Approximate Solutions: Evolutionary computation (EC) shines in providing quick 

approximate solutions for large-scale, challenging optimization problems. In many scenarios, EC's 

ability to efficiently navigate the search space and converge towards satisfactory solutions proves 

advantageous over conventional optimization methods. 

Multi-objective Optimization: EC holds promise for multi-objective optimization, where the goal is 

to find solutions that simultaneously optimize multiple conflicting objectives. EC's ability to handle 

trade-offs between objectives makes it well-suited for these complex optimization problems. 

Optimization under Changing Environments: EC is a promising approach for optimization under 

changing environments, where the optimal solutions evolve over time. EC's inherent adaptability and 

ability to learn from changing conditions make it a valuable tool for dynamic optimization problems. 

Hybrid Algorithms: EC can be effectively integrated with conventional optimization techniques and 

other modern methods to create hybrid algorithms capable of solving complex problems. By 

combining the strengths of different approaches, hybrid algorithms can achieve improved efficiency 

and performance in tackling challenging optimization tasks. 

Computationally Cheaper: EC methods become an attractive choice when they demonstrate 

computational efficiency in solving any class of problems. The ability to balance exploration and 

exploitation of the search space, coupled with the potential for parallel processing, often leads to 

faster convergence and reduced computational costs compared to conventional optimization 

techniques. This advantage is particularly evident in handling large-scale, complex problems that 

involve multiple objective functions or dynamic environments. 

Computational time: computational time is not a critical factor, EC methods can be employed to 

deliver near-optimal solutions. EC's ability to thoroughly explore the search space and converge 

towards optimal solutions makes it a valuable tool for problems that demand high-quality results 

without stringent time constraints. 

Highly complex problem: Problems involving many complex features like multi-objectivity, multi-

modality, changing environment, etc. would be suitable for EC techniques. 

 

 



 

 

                     2.7.5. The Limitations of Evolutionary Computation 

 

There are several drawbacks to using EC based methodology for solving optimization problems. They 

are briefly discussed below. 

Table 2.6: Evolutionary Computation methodologies 

 

 

Heuristics 

EC-based optimization techniques are classified as heuristic search algorithms, which 

means they employ problem-specific rules of thumb to guide their search for optimal 

solutions. While these techniques often perform well in practice, they cannot 

guarantee that they will always find the absolute best solution. This is because they 

may get stuck in local optima, which are points in the search space that represent 

better solutions than their immediate neighbors but are not necessarily the globally 

optimal solution [114,117]. 

 

Parameters of EC 

The performance of EC algorithms is heavily influenced by the choice of parameters, 

such as population size, selection pressure, mutation rate, and crossover rate. These 

parameters need to be carefully tuned for each specific optimization problem to 

achieve optimal results. Selecting inappropriate parameters can lead to poor 

convergence or premature convergence to suboptimal solutions [131]. 

 

Convergence of 

EAs 

The convergence behavior of EC algorithms, meaning their ability to consistently 

find good solutions within a reasonable amount of time, is highly dependent on the 

problem being solved and the specific EC method being used. While theoretical 

bounds have been established for the convergence rate of certain EC algorithms, such 

as genetic algorithms, these bounds are often problem-specific and may not hold for 

all optimization problems ([132].  

Mathematical 

Insight 

EC algorithms primarily focus on searching for optimal solutions without providing 

much insight into the underlying mathematical structure of the optimization problem. 

This can be a limitation for decision-makers who may want to understand the 

problem's structure to make more informed decisions. 

 

Sensitivity 

Analysis 

Sensitivity analysis, which assesses how changes in the problem's parameters affect 

the optimal solution, is generally less efficient for EC models compared to linear 

programming (LP) models. This is because EC models are often more complex and 

less well-understood than LP models, making it more difficult to derive analytical 

expressions for sensitivity analysis. 
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Chapter 3 

Simulation and Characterization of monolayer molybdenum disulfide 

with Random Defects 
 

In this chapter, the focus is to simulate a suspended free standing nanosheet of monolayer MoS2 with 

randomly distributed defects. There are 3 objectives of this chapter. First, by comparing the elastic 

properties of pristine MoS2 from our simulations with experimental results, the accuracy of the SW 

style interatomic potential is assessed and validated. Second, the introduction of large and diverse 

number of defects into the crystal structure of MoS2 material is a natural consequence of chemical 

growth. Therefore, understanding the nature of disorders and their role in the physical properties of 

MoS2 is essential in its future developments. In this chapter we examine the roles of several 

parameters such as the shape of the membrane, the size influence of nanosheet by systematically 

varying the defects on the mechanical performance of monolayer MoS2 are discussed in Section 3.2. 

Third and last, anti-site defects effects of monolayer MoS2 are captured and described in Section 3.3 

as two major sources of disorder in the atomic structure of MoS2. 

3.1 Introduction:  

Significance of Mechanical Properties in Materials  

In the realm of materials science, mechanical properties reign supreme as a cornerstone for evaluating 

material performance. While the modern era has witnessed a surge in the discovery of innovative 

materials with diverse functionalities, mechanical properties remain indispensable, particularly in the 

pursuit of robust and rigid materials for applications ranging from everyday life to the vast expanse 

of space [133,134]. Mechanical attributes continue to hold sway in various domains, including 

semiconductors, where they complement the electrical and optical traits of materials [135,136]. 

Furthermore, in the burgeoning field of flexible, stretchable, and epidermal electronics, mechanical 

properties play a pivotal role in design and functionality, paving the way for the future of the 

electronics industry [137,138]. 

Over the past three decades, nanoscience and nanotechnology have captivated the scientific 

community, with two-dimensional (2D) materials emerging as a focal point [2,139–142]. In the realm 

of 2D materials, electrons and phonons are confined to a planar dimension, leading to properties that 

diverge from their three-dimensional counterparts [143]. Iconic examples include graphene, known 

for its massless Dirac fermions, and molybdenum disulfide (MoS2), exhibiting an intrinsic direct band 

gap [54,144]. These distinctive features give rise to a fascinating array of electrical and optical 

characteristics [20,33,145,146]. An intriguing question arises: Does the mechanical behavior of 2D 
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materials also alter as they approach the monolayer limit? In the realm of three dimensions, properties 

like the elastic modulus (E) and Poisson's ratio (ν) serve as markers for determining a material's elastic 

properties. In the context of 2D materials, these parameters necessitate a renormalization by the planar 

elastic energy, resulting in units of J/m² or N/m. While the utilization of 2D modulus and strength is 

more fitting for describing 2D materials, a comparative analysis between 2D and 3D materials 

requires the conversion of these 2D parameters to their 3D counterparts by dividing the 2D values by 

the thickness of the 2D materials. Conventional elastic theory can be seamlessly applied to 2D 

systems, but numerous novel aspects of mechanical properties in 2D systems diverge from those in 

3D systems. The initial step toward probing the mechanical properties of 2D systems involves 

precisely measuring the mechanical attributes of 2D materials. 

3.2 Elasticity measurements by experimental methods and simulation 

 

Measuring the mechanical properties of two-dimensional (2D) systems is challenging due to the 

difficulty in achieving uniform stretching of a 2D membrane as compare to one-dimensional (1D) 

systems like carbon nanotubes, because stretching the 1D structures directly provides insights into 

their mechanical properties [133,147]. In 2008, researchers at Columbia University, led by Lee et al., 

made a significant breakthrough by using atomic force microscopy (AFM) nanoindentation to 

investigate suspended circular graphene membranes [148]. In this method, the AFM tip is used to 

apply pressure on the center of the membrane (Figure 3.1). When the radius of the tip is much smaller 

than the radius of the hole (rtip << rhole), the force applied by the AFM tip can be approximated as a 

point load. A simplified continuum mechanics model relates the applied load to the deformation 

geometry of the membrane [148,149]. 

 
𝐹 = (𝜎0

2𝐷𝜋)𝛿 + (𝐸0
2𝐷
𝑞3

𝑟2
) 

     (3.1) 

where F is the applied point load force, d is the indentation depth at the center of the membrane, r is 

the hole radius, q = 1/(1.05-0.15v-0.16v2) is a dimensionless constant determined by the Poisson’s 

ratio, v, of the membrane, E2D and σ0
2D are the 2D modulus and the 2D pretension, respectively (Fig. 

3.1). 
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The Eqn 3.1 relates the applied load to the indentation depth, describes the mechanical behavior of 

ultrathin monolayer membranes. These membranes are indeed exceptionally thin, which makes 

contributions from bending or flexural rigidity negligible in many cases. In the early stages of 

indentation, the relationship between the applied load (F) and the indentation depth (δ) is 

approximately linear (F ~ δ). The coefficient in this linear relationship is primarily influenced by the 

pre-tension in the membrane. As the indentation depth increases, the load becomes dominated by the 

stiffness of the membrane, leading to a cubic relationship (F ~ δ3). Graphene and TMDs exhibit nearly 

isotropic mechanical properties in the plane, due to their lattice structures with 6-fold or 3-fold 

symmetry. 

Two studies have comprehensively investigated the elastic properties, stretching behavior, and 

fracture characteristics of ultrathin freely suspended MoS2 [50,150]. In both studies, an atomic force 

microscopy (AFM) tip was used to apply force to a MoS2 membrane suspended over a small hole in 

a SiO2 substrate. The deflection of the membrane was measured, and the data was used to extract key 

mechanical parameters, such as the pre-tension (σ0
2D) and the elastic modulus (E2D). For samples with 

a thickness of 5–20 layers as shown in Figure 3.1 b, the pre-tension was determined to be 0.05 ± 0.02 

N/m and Young's modulus (E Young) to be 350± 20 Gpa  [150]. For monolayer thin membranes, the 

average elastic modulus (E2D) was found to be 180 ± 60 N/m1, with a pre-stress (σ0
2D) ranging from 

0.02 to 0.1 N/m. This yielded Young's modulus (E) of 270 ± 100 GPa, which is close to the Young's 

modulus of MoS2 nanotubes (230 GPa) and is about four times smaller than that of graphene (1 TPa). 

 
1  1 N/m = 1.55  Gpa 

 

Figure 3.1 Illustration of probing mechanical properties of 2D materials by AFM 

nanoindentation. [156]. b Force versus deformation traces measured at the center of the 

suspended part of MoS 2 nanosheets with 5, 10, and 20 layers in thickness. c Loading curves for 

single and bilayer MoS2.; c Loading curves for single and bilayer MoS2 [18].  
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Young's modulus of bilayer MoS2 was determined to be 200 ± 60 GPa, slightly lower than that of a 

monolayer due to "defects or interlayer sliding".  

Chemical vapor deposition (CVD) methods have been developed to synthesized large-area and wafer-

scale of MoS2 [151,152].  These CVD-grown samples typically exhibit a distinct pattern of isolated 

triangular monolayer crystals at positions farther away from the precursors and a continuous film 

closer to the precursors (Figure 3.2 [a-c]). To investigate the mechanical properties of CVD-grown 

monolayer TMDs, atomic force microscopy (AFM) nanoindentation have been employed, a similar 

approach used for CVD graphene [153]. For CVD-grown monolayer MoS2 and WS2, have transferred 

onto holey substrates to eliminate complications arising from ripples during mechanical property 

measurements Figure 3.2 [d-e]. Using AFM nanoindentation, they determined the Young's modulus 

of monolayer CVD MoS2 and WS2 as 171 ± 11 N/m (corresponding to 264 GPa) and 177 ± 12 N/m 

(272 GPa), respectively Figure 3.2 [f-g].  

 

  

Theoretical calculations predict a 2D modulus of 123 N/m for MoS2, falling short of experimental 

measurements. This discrepancy aligns with the tendency of DFT-GGA calculations to underestimate 

the bulk modulus of semiconductor materials. Experimental studies have revealed a modulus of ~170 

N/m for CVD MoS2, only marginally lower than that of exfoliated MoS2 (~180 N/m) [50]. This 

observation suggests that point defects in CVD samples do not exert a significant influence on their 

Figure 3.2 Measurements of CVD MoS2: AFM image of an entire triangle transferred onto a 

holey substrate, histograms of E 2D for MoS2 and the corresponding Gaussian distribution, [Ref 

from [156]. 
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mechanical properties. All of the elastic moduli and break strengths for 2D materials ever measured 

are listed in Table 3.1. 

Table 3.1. Elastic properties of 2D materials ever measured. 

Materials Young’s modulus (Gpa) Tensile strength (Gpa) 

Exfoliated graphene (monolayer) [148] 1000 130 

Bulk MoS2 [154] 240 - 

 Exfoliated MoS2 (monolayer) [50] 270 23 

 Exfoliated MoS2 (ML) [155] 330 - 

 CVD MoS2 (monolayer)  [156] 264 - 

 

Cooper et al. [157] introduced a multiscale constitutive model to accurately capture the nonlinear 

elastic behavior of monolayer MoS2. This model, derived from a Taylor series expansion of the elastic 

strain energy density potential, incorporates 14 independent parameters determined through fitting to 

density functional calculations. The model's validity was confirmed by comparing simulated results 

to experimental data obtained from atomic force microscopy (AFM) indentation tests. The model 

accurately predicted the ultimate stress (16.5 N/m) and in-plane elastic modulus (130 N/m) of 

monolayer MoS2, aligning with experimental findings reported by Bertolazzi et al. [50]. Cooper et 

al.'s model serves as a bridge between experimental observations and computational simulations, 

providing a valuable tool for large-scale simulations of monolayer MoS2 under various conditions. 

Li et al. [158] conducted a study to map the in-plane Young's modulus of mono- and bi-layer MoS2 

on a substrate with high spatial resolution. They used a technique called bi-modal atomic force 

microscopy to accurately map the effective spring constant between the microscope tip and the 

sample. Additionally, they developed a finite element method to quantitatively account for the effect 

of substrate stiffness on deformation.  As a result of their investigation, the in-plane Young's modulus 

of monolayer MoS2 was determined to be approximately 265 ± 13 GPa. The in-plane Young's 

modulus of bi-layer MoS2 could not be differentiated from that of monolayer MoS2. The results of 

the study are consistent with previous reports and provide a more precise characterization of the 

Young's modulus of MoS2.  Peng and De [159] investigated the mechanical properties of g-MoS2 

(single-layer referred to as g-MoS2) using density functional theory (DFT) simulations for elastic 

energy storage applications. They found that g-MoS2 is mechanically stable and can withstand large 

strains (0.24 for armchair, 0.37 for zigzag, and 0.26 for biaxial deformation) before structural failure. 

The in-plane stiffness of g-MoS2 is exceptionally high (120 N/m or 184 GPa), indicating excellent 
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mechanical strength. Higher-order elastic constants are crucial for accurately describing the material's 

response to large deformations. Kandemir et al. [93] investigated the lattice thermal conductivity of 

MoS2 and MoSe2 using molecular-level theories. They developed an interatomic potential parameter 

set that accurately reproduces the lattice thermal transport properties of these materials when 

compared to first-principles calculations. The lattice length of MoS2 was determined to be 3.2 

Angstroms, and the distance between two chalcogen atoms, one above and one below the Mo layer 

(dXu, Xd), was found to be 1.63 Angstroms. Additionally, the elastic constants, Young's modulus, and 

Poisson's ratio were calculated. For example, C11 was determined to be 133 N/m, C12 was 39.4 N/m, 

Young’s modulus (E) was 121.4 N/m, and Poisson’s ratio (ν) was 0.3.  The study highlights the 

importance of accurately modeling these materials at the molecular level to predict their thermal 

transport properties. 

 

3.3 Atomic defects in monolayer molybdenum disulfide (MoS2) 

 

Defects indeed play a crucial role in shaping the properties of two-dimensional materials like 

monolayer MoS2. Structural defects in monolayer MoS2 can take various forms, including point 

defects, line defects, and grain boundaries. These defects can significantly impact the material's 

properties. Point defects in monolayer MoS2 can be generated during the growth process or by other 

means, such as electron irradiation in high-resolution transmission electron microscopy (HR-TEM) 

[160,161]. These defects can include vacancies, substitutions, or adatoms that replace or disrupt the 

regular arrangement of atoms in the lattice. The presence of defects can have a significant impact on 

the mechanical properties of monolayer MoS2. For instance, defects can reduce the material's failure 

strain and intrinsic strength [162]. Both experimental and computational methods have been 

employed to characterize and visualize structural defects in monolayer MoS2. Experimental 

techniques like HR-TEM can reveal the presence and distribution of defects, while computational 

simulations help understand their effects on material properties at the atomic scale. Hong et al. [163] 

investigated point defects in monolayer MoS2 using a combination of experimental and theoretical 

methods. They used aberration-corrected scanning transmission electron microscopy (STEM) to 

systematically identify and quantify point defects in monolayer MoS2 samples prepared by various 

methods, including mechanical exfoliation, physical vapor deposition (PVD), and chemical vapor 

deposition (CVD). They found that the defect density could be as high as 3.5x1013 cm-2 and that the 

dominant type of defect depended on the growth method. Interestingly, the dominant category of 

defects varied depending on the growth method. In mechanical exfoliation and CVD samples, sulfur 

vacancies were the predominant defects, while in PVD samples, molybdenum antisite defects were 

more common as shown in Figure 3.3. Ab-initio calculations and electric transport measurements 

revealed that point defects can introduce localized electronic states within the band gap, affecting 
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electronic properties and charge transport. The work highlights the importance of defect engineering 

in the growth of high-quality monolayer MoS2 for high-performance electronic devices. 

 

 

Avik et al. [164] provides insights into the mechanical properties of single-layer MoS2 with vacancy-

induced defects. The study shows that the Young's modulus is significantly affected by different 

defect types and their density. However, temperature has a less pronounced impact. Interestingly, 

SLMoS2 exhibits anisotropic mechanical behavior, with the zigzag direction being more sensitive to 

defects than the armchair direction. The study also indicates that vacancies have a greater influence 

on mechanical properties than phase transitions. W. Wang et al. [165] investigated the structural and 

electronic properties of monolayer MoS2 with sulfur vacancies using density functional theory (DFT). 

They found that sulfur vacancies cause inward relaxation of the MoS2 structure and reduce the 

Figure 3.3 | Atomic structures of antisite defects. (a–c) High-resolution STEM–ADF images of 

antisite Mo S, Mo S2 and Mo2 S2, respectively. The former two antisites (highlighted by the red 

dashed rectangle in k) are dominant in PVD-synthesized MoS2 single layers. Scale bar, 0.5 nm 

(d, e) Atomic structures of antisite defects S Mo and S2 Mo, respectively. (f–j) Simulated STEM 

images based on the theoretically relaxed structures of the corresponding point defects in (a–e), 

using simulation software QSTEM 49. (k–t) Relaxed atomic model of all antisite defects in a–e 

through DFT calculation, with top and side views, respectively. Light blue, Mo atoms; gold, S 

atoms. For ease of comparison, we have presented the simulated ADF images before the 

atomistic schematics of the DFT calculated structures [163]. 
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material's Young's modulus and ultimate strength. The weakening effect of vacancies on mechanical 

properties varies with different uniaxial tensile loading directions. Under tensile strain, the band gap 

of monolayer MoS2 decreases regardless of the vacancy type or loading direction.  

Nasiri [166] investigated the mechanical failure of graphene sheets with randomly distributed 

vacancies using atomistic simulations. They found that the failure stress of graphene sheets decreases 

with increasing defect concentration and sheet size, consistent with the Duxbury-Leath-Beale (DLB) 

theory of mechanical breakdown in random media. This theory deals with how disorder and 

connectivity affect transport properties and failure behavior in disordered materials. The study 

highlights the importance of statistical analysis and the complex energy landscape governing 

microstructure evolution in strongly defective graphene. Yan Chen's focuses on introducing lattice 

defects in monolayer MoS2 through thermal annealing in a vacuum and Ar+ ion irradiation. These 

methods create different types and densities of lattice defects, allowing for the investigation of how 

defective nature affects the material's electronic structure. The findings indicate that lattice defects 

significantly impact the electronic structure of monolayer MoS2, highlighting their importance in 

understanding and tailoring the material's electrical and optical properties. 

In general, atomistic simulation software is employed to identify the structural strength of a material 

when subjected to external forces. This process typically begins by finding the configuration with the 

lowest energy, a procedure often initiated through conjugate gradient minimization. This technique 

provides valuable insights into the crystal lattice structure of materials under various phases and 

conditions. Molecular static simulations are specifically designed to investigate the mechanical 

properties of materials, with a particular focus on determining the independent elastic constants of 

monolayer Molybdenum disulfide (MLMoS2). These simulations aim to understand how the material 

responds to mechanical stress, especially when it contains point defects, such as vacancies in the 

Sulfur (S) atoms. This study deliberately introduces random defects into the monolayer MoS2. 

Simulating these intricate random defects accurately requires running numerous simulations using 

molecular statics. This approach effectively captures the elastic properties of the material. The 

methodology involves conducting multiple defect simulations, each with varying defect fractions 

ranging from 0% to 25%. For each defect fraction, the simulations provide valuable information about 

the material's elastic properties and how these properties relate to the topological characteristics of 

the monolayer nanosheet. Li et al. and Wang et al. [165,167] have previously explored low 

concentration defects in the topology, whereas our study encompasses defects spanning a range from 

low to high concentrations to replicate the monolayer structure of MoS2. To achieve this, our approach 

involves introducing multiple defects with varying concentrations into the topology. We use 

conventional molecular static modeling to generate topology-based atomistic defects, employing a 

random equilibrium distribution of the domain in our research. In contrast, Hong et al. [163] have 
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highlighted the prevalence of antisite defects, where molybdenum replaces sulfur, in MoS2 grown 

using physical vapor deposition (PVD), while sulfur vacancies are more common in MoS2 obtained 

through mechanical exfoliation and chemical vapor deposition (CVD) methods. MoS2 is a material 

of significant interest due to its unique electrical, thermal, and optical properties. Another study [168] 

has examined the influence of vacancies on the electrical properties of MoS2. Our research, on the 

other hand, concentrates on investigating the mechanical properties of monolayer MoS2 containing 

randomly distributed defects by systematically varying the concentration of vacancies. We present 

new results obtained for different defect levels and various random defect distributions. These 

findings have the potential to be valuable for future research involving the optimization of mechanical 

nanomachines and nanosystems based on MoS2 sheets. The simulation methodology in detail is 

discussed and provides information on the theoretical framework used for analyzing defected sheets 

in chapter 2. The results and discussion are presented in Section 3.6 and summary is provided in 

Section 3.7 

3.4 Elastic stability conditions in crystalline systems: 

 

The fundamental principles governing the mechanical stability of stress-free crystalline structures 

were established through the groundbreaking work of Max Born and his colleagues in the 1940s 

[169]. Born's seminal contributions in this field were meticulously compiled and further elaborated 

upon in his influential book published in collaboration with Kun Huang in 1954 [170]. Building upon 

these foundations, subsequent textbooks, such as those authored by J. F. Nye and D. C. Wallace 

[171,172], have endeavored to simplify and clarify the stability criteria for specific crystal classes, 

bringing them within reach of a broader audience. In particular, for cubic crystals, the stability 

conditions assume a remarkably straightforward form:   

 𝐶11 − 𝐶12 > 0; 𝐶11 + 2𝐶12 > 0; 𝐶44 > 0     (3.2) 

The cubic crystal system adheres to the well-known "Born stability criteria". This section outlines the 

general elastic stability conditions for crystals and presents necessary and sufficient conditions for 

cubic and hexagonal crystal classes. It also identifies crystal classes lacking analytical necessary and 

sufficient conditions. 
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3.4.1 General Stability Condition: Cubic crystal system 

 

The elastic behavior of a lattice is described by its matrix of second-order elastic constants: 

 
𝐶𝑖𝑗 =

1

𝑉0
(
𝜕2𝐸

𝑑𝜀𝑖𝑑𝜀𝑗
) 

   (3.3) 

The elastic energy (E) of a crystal can be expressed as a function of its equilibrium volume (V0) and 

strain (ε). This energy is described by a 6 × 6 matrix, also known as the stiffness matrix, which 

contains 21 independent components. The specific crystal class of the material further imposes 

symmetrical constraints, reducing the number of independent elastic constants. For an arbitrary 

deformation represented by an infinitesimal strain, the crystal's energy can be represented by the 

following quadratic form: 

 

𝐸 = 𝐸0 +
1

2
𝑉0 ∑ 𝐶𝑖𝑗

6

𝑖,𝑗=1

𝜀𝑖𝜀𝑗 + 𝑂(𝜀3) 
    (3.4) 

A crystal is dynamically stable if the quadratic form representing its elastic energy is always positive 

(E > 0, ∀ ε ≠ 0) [173]. This is mathematically equivalent to the following Born stability criteria: 

• The matrix C is positive definite. 

• All eigenvalues of C are positive. 

• All leading principal minors of C are positive (determinants of its upper-left k by k sub-

matrix, 1 ≤ k ≤ 6, Sylvester's criterion). 

These conditions are valid for any crystal and are not linear. They imply some necessary but not 

sufficient conditions, such as all diagonal elements of C being positive (Cii > 0, ∀ i). Another 

example of necessary condition is. 

 (𝐶𝑖𝑗)
2
< 𝐶𝑖𝑖𝐶𝑗𝑗∀𝑖, 𝑗 

    (3.5) 

This section focuses on expressing closed-form expressions for the necessary and sufficient 

elastic stability conditions for two Laue classes among seven. The Table 3.2 also provides the number 

of independent elastic constants for each class. The analysis is focused on three-dimensional 

crystalline systems but can be extended to one- or two- dimensions [174,175]. 



74 

 

Table 3.2. Laue groups and number of independent second-order elastic constants Cij. 

Crystal system Laue class Point groups Cij’s 

Cubic m3m 432, 43m, m3m 3 

Hexagonal 6/mmm 6mm,622,32m,6/mmm 5 

Rhombohedral 3m 32,3m,3m 6 

Tetragonal 4/mmm 4mm,422,42m,4/mmm 6 

orthorhombic mmm 222,2mm, mmm 9 

Monoclinic 2/m 2, m,2/m 13 

Triclinic 1 1,1 21 

 

  
The cubic crystal system has the simplest form of elastic matrix, with only 3 independent 

constants: C11, C12 and C44: 

 

𝐶𝑐𝑢𝑏𝑖𝑐 =

(

 
 
 

𝐶11 𝐶12 𝐶12
. 𝐶11 𝐶12
. . 𝐶11

𝐶44
𝐶44

𝐶44)

 
 
 

 

 

    (3.6) 

(in this notation, dots are used to indicate nonzero elements constrained by the symmetric nature 

of the matrix). The three Born stability criteria for the cubic system are well-known: 𝐶11 − 𝐶12 >

0; 𝐶11 + 2𝐶12 > 0; 𝐶44 > 0 

They are necessary and sufficient. Here we merely note that the first two conditions imply that C11 > 

0, so it needs not be noted as an extra condition, as is sometimes done. Also, the first condition can 

be equivalently stated as 𝐶11 > |𝐶12|. 
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3.4.2 Hexagon crystal system 

 

The Laue class of the hexagonal crystal system, have the following form for the elastic matrix: 

 

𝐶ℎ𝑒𝑥𝑎𝑔𝑜𝑛𝑎𝑙 =

(

 
 
 
 

𝐶11 𝐶12 𝐶13
. 𝐶11 𝐶12
. . 𝐶33

𝐶44
𝐶44

𝐶66)

 
 
 
 

 

 

        (3.7) 

Crystals of the hexagonal crystal system have only 5 independent elastic constants, due to the added 

relation: 

 𝐶66 = (𝐶11 − 𝐶12) 2⁄       (3.8) 

By direct calculation of the eigenvalues of the stiffness matrix above, one can derive the following 

four necessary and sufficient conditions for elastic stability in the hexagonal and tetragonal (I) case: 

 𝐶11 > |𝐶12|; 2𝐶13
2 < 𝐶33(𝐶11 + 𝐶12)

𝐶44 > 0; 𝐶66 > 0
 

    (3.9) 

(where the condition on C66 is redundant with the first one, for the hexagonal case). 

 

3.4.3 Elastic stability in Two-Dimensional Materials 

 

The elastic stiffness tensor relates the stress tensor and strain tensor through Hooke's law. The 

generalized Hooke's law expresses this linear relationship in terms of finite strain variables and elastic 

constants Cijkl [172,176] 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 → 𝜎 = 𝐶𝜖     (3.10) 

• σ represents the second-rank Cauchy stress tensor. 

• 𝐶 represents the fourth-rank anisotropic elastic stiffness tensor. 

• ε represents the second-rank small strain tensor. 
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These equations are formulated in a three-dimensional (3D) context, where indices i, j, and k range 

from 1 to 3. In a two-dimensional (2D) scenario, the indices i, j, and k would be limited to 1 and 2. 

Additionally, it's worth noting that the Einstein summation convention is applied here, implying that 

repeated indices (in this case i, j, and k) are implicitly summed over in the calculations. 

From the symmetry of σ and ε it follows that 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘      (3.11) 

and from the thermodynamic requirement of existing of a strain energy density function U(ε) 

(hyperelastic material) [177] such that 

 
𝑈 =

1

2

𝜕2𝑈

𝑑𝜀𝑖𝑗𝑑𝜀𝑘𝑙
 

    (3.12) 

additionally 

 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗     (3.13) 

The number of independent components in the elastic stiffness tensor (Cijkl) varies depending on the 

dimensionality. 

• In 3D, the elastic stiffness tensor 𝐶 is a fourth-rank tensor with 81 components. However, due 

to symmetries and relationships within the tensor, the number of independent components is 

reduced to 21 [178]. 

• In 2D, which is a plane stress or plane strain scenario, the elastic stiffness tensor 𝐶 is a fourth-

rank tensor with 36 components. Again, due to symmetries and relationships within the tensor, 

the number of independent components is further reduced to 6 [176,179,180]. 

Both the fourth-rank tensor notation and the Voigt notation can be used to represent the generalized 

Hooke's law, which relates stress and strain in elastic materials. In 2D, the Voigt notation uses a 3x3 

matrix to represent the elastic stiffness. 

The reduction in the number of independent components in lower dimensions simplifies the 

description of elastic behavior while capturing essential characteristics for the specific scenario (3D 

or 2D). This simplification is particularly valuable for analytical and computational purposes. 
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[

𝜎11
𝜎22
𝜎12
] = [

𝐶1111 𝐶1122 𝐶1112
𝐶1122 𝐶2222 𝐶2212
𝐶1112 𝐶2212 𝐶1212

] [

𝜀11
𝜀22
2𝜀12

] 
    (3.14) 

or 

 

[
𝜎1̂
𝜎2̂
𝜎3̂

] = [

𝐶11^ 𝐶12^ 𝐶13^

𝐶12^ 𝐶22^ 𝐶23^

𝐶13^ 𝐶23^ 𝐶33^

] [
𝜀1̂
𝜀2̂
𝜀3̂

] → 𝜎 = 𝑐𝜀 

    (3.15) 

The less popular is a second-rank tensor, called also orthonormal or Mandel, notation: 

 

[

𝜎11
𝜎22

√2𝜎12

] = [

𝐶1111 𝐶1122 √2𝐶1112

𝐶1122 𝐶2222 √2𝐶2212

√2𝐶1112 √2𝐶2212 √2𝐶1212

] [

𝜀11
𝜀22

√2𝜀12

] 

 

    (3.16) 

Or 

 

[

𝜎1
𝜎2
𝜎3
] = [

𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

] [

𝜀1
𝜀2
𝜀3
] → 𝜎 = 𝑐𝜀. 

 

    (3.17) 

The Voigt notation and the second-rank tensor notation differ in their fundamental representation of 

elastic properties. While the Voigt notation (Eqn 3.15), the elements of the matrix 𝑐 are not the 

elements of a second-rank tensor, simplifies the mathematical representation of elastic properties in 

2D dimensions, it does not adhere to the tensorial properties of a second-rank tensor. In contrast, the 

second-rank tensor notation (Eqn 3.17), the elements of the tensor c are indeed the elements of a 

second-rank tensor maintains the tensorial nature of the elastic properties, making it more suitable 

for representing elastic properties in higher dimensions. 

The fourth-rank tensor notation (Eqn 3.10) and the second-rank tensor notation (Eqn 3.17) are 

mathematically equivalent [176,179,181], meaning they describe the same physical relationships and 

properties but use different mathematical representations. The choice between these notations 

depends on the specific problem and the desired analytical or computational convenience. 

I. Oblique (parallelogram) (a ≠ b, ∡ ≠ 900),  
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II. Rectangular (a ≠ b,  ∡ = 900), 

III. Centered rectangular or diamond (a ≠ b,  ∡ = 900), 

IV. Square (a = b, ∡ = 900),  

V. Rhombic or hexagonal (a = b, ∡ = 1200). 

The intricate arrangement of atoms within a crystal, known as its crystallographic structure, gives rise 

to a fundamental property: symmetry. Symmetry dictates the geometric patterns and arrangements 

that characterize the crystal, and its influence extends to the material's physical properties. 

• Symmetry Elements: The building blocks of crystal symmetry are symmetry elements, which 

include rotation axes, mirror planes, and inversion centers. These elements represent the ways 

in which the crystal structure can be transformed while preserving its overall form. The 

presence of these symmetry elements imposes constraints on the arrangement of atoms within 

the crystal lattice. 

• Symmetry-Related Properties: The symmetry inherent in a crystal's structure extends to its 

physical properties. The electrical conductivity of a crystal, for instance, may exhibit 

directional dependence due to the crystal's symmetry. Similarly, optical properties like 

birefringence arise from the symmetry of the crystal lattice. 

• Symmetry Constraints: Symmetry acts as a guiding principle, limiting the range of values that 

physical properties can assume. In crystals with high symmetry, certain components of the 

elastic stiffness tensor may become equal, reducing the number of independent elastic 

constants. Symmetry serves as a framework for understanding the range of possible physical 

properties for a given crystal. 

• Curie's Principle: Curie's principle establishes a fundamental relationship between the 

symmetry of a physical property and the symmetry of the crystal. It states that the symmetry 

of a physical property cannot be lower than the symmetry of the crystal itself. In essence, the 

crystal's symmetry provides a lower bound for the symmetry of any physical property it 

exhibits. 

• Higher Symmetry: While Curie's principle sets a lower bound, it is possible for physical 

properties to possess higher symmetry than the crystal itself. This occurs when the physical 

property, influenced by interactions or other factors, exhibits additional symmetries not 

explicitly present in the crystal lattice. For example, the optical properties of a crystal might 

exhibit higher symmetry due to the alignment of molecules or domains within the crystal. 
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Symmetry principles are fundamental in the study of physical properties in crystalline materials. They 

provide valuable insights into how the arrangement of atoms in a crystal lattice influences the 

behavior of physical properties of the material may not be lower than the symmetry of the crystal, but 

may be higher [182,183].  

The classification of linear elastic materials is based on the mathematical properties of fourth-rank 

Euclidean symmetric tensors [184] which describe the linear relationship between stress and strain in 

these materials. This classification is independent of the crystal structure or symmetry of the material. 

The behavior of linear elastic materials is governed by the symmetrical properties of their elastic 

stiffness tensor [184] This classification system, independent of material crystal structure or 

symmetry, categorizes three-dimensional (3D) materials into eight distinct elastic symmetry classes, 

each representing a unique response to mechanical deformation. In contrast to their 3D counterparts, 

two-dimensional (2D) linear elastic materials exhibit a reduced number of symmetry classes, with 

only four distinct categories recognized [179,184] This reduction stems from the inherent 

dimensionality difference between 2D and 3D materials, limiting the possible symmetries that the 

elastic stiffness tensor can possess. The Born stability conditions, a set of mathematical inequalities 

derived from the requirement of bounded total crystal energy, play a crucial role in assessing the 

stability of 3D crystals. These conditions ensure that the elastic constants of a crystal satisfy specific 

constraints, guaranteeing its mechanical stability [185]. While the Born stability conditions are well-

established for 3D crystal systems, their extension to 2D systems remains an active area of research 

to necessitate further exploration and development of appropriate mathematical frameworks to 

accurately describe their mechanical and elastic behavior. 

In general, an unstressed crystalline structure is considered stable, meaning it can maintain its 

shape without deformation and in the harmonic approximation when two conditions are met: 

 

• All its phonon modes have positive frequencies ω for all wave vectors q (dynamical stability): 

 

𝝎𝟐(𝒒) > 0     (3.18) 

• The strain energy density function, given by the quadratic form (Eqn 3.10), is always positive 

(elastic stability): 

 𝑈(𝜀) > 0, ∀𝜀 ≠ 0     (3.19) 
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In mathematical elasticity, the condition related to phonons in this context is referred to as "strong ellipticity." 

It's crucial to understand that strong ellipticity does not imply the positive definiteness of the strain energy 

density function (as represented in Eqn 3.9). In fact, the implication goes the other way. In simpler terms, while 

these conditions may appear similar or related, they actually have distinct implications and should not be 

confused with one another [178]. 

Determining the positive definiteness of the quadratic form in (Eqn 3.19) can be a complex task. 

However, there are alternative, equivalent conditions that offer simpler verification, as described by 

[185] 

• Eigenvalue Criterion: All eigenvalues of the tensor c, expressed in second-rank tensor 

notation (Eqn 3.17), must be positive. 

• Sylvester's Criterion: All leading principal minors of the tensor c, as defined in (Eqn 3.17) 

(the determinants of its upper-left k by k submatrices), must be positive. 

The elastic stiffness tensor c and the stability conditions for 2D materials vary depending on the 

symmetry class. Specifically, the independent elastic constants and Born stability conditions for 

five 2D plan Bravais (see Figure 3.4) lattices are listed as follow [176]:  

 

Figure 3.4 Five types of 2D Bravais lattices. (a–e) are oblique, primitive rectangular, centered 

rectangular, hexagonal, and square, respectively. 

 

• Full symmetry (isotropy) → Hexagonal lattice (V) (2 elastic constants) 

 

𝐶𝑖𝑗 = [
𝐶11 𝐶12 0
𝐶12 𝐶22 0
0 0 𝐶11 − 𝐶12

] 
    (3.20) 
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𝐶11 > 0 and 𝐶11>|𝐶12| 

• Symmetry of a square, (tetragonal) → Square lattice (IV) (3 elastic constants) 

 

𝐶𝑖𝑗 = [
𝐶11 𝐶12 0
𝐶12 𝐶22 0
0 0 𝐶33

] 

𝐶11 > 0 and 𝐶33 > 0 and 𝐶11>|𝐶12| 

 

    (3.21) 

• Symmetry of a rectangle, (orthotropy)→ Rectangular (II) & centered rectangular lattice (III) 

(4 elastic constants) 

 

𝐶𝑖𝑗 = [
𝐶11 𝐶12 0
𝐶12 𝐶22 0
0 0 𝐶33

] 

𝐶11 > 0 and 𝐶33 > 0 and 𝐶11𝐶22>𝐶12
2  

    (3.22) 

•  No symmetry (anisotropy) → Oblique lattice (I) (6 elastic constants) 

 

 

  
𝐶𝑖𝑗 = [

𝐶11 𝐶12 𝐶13
𝐶12 𝐶22 𝐶23
𝐶13 𝐶23 𝐶33

] 

𝐶11 > 0 and 𝐶11𝐶22>𝐶12
2 ∧ 𝑑𝑒𝑡𝐶𝑖𝑗 > 0 

    (3.23) 

After the theoretical introduction, I turn my attention to how to calculate elastic constant C via 

state-of-the-art atomistic based Molecular static calculation. Here, I take the hexagonal lattice as an 

example to show how to calculate the independent elastic constant based on the energy– strain 

approach. It should be noted that the nature of this problem is to solve the linear equation. For the 

squared lattice, there are 3 independent elastic constants (C11, C12 and C66), which means that we need 

at least 3 equations to solve this problem. 
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3.5 Elastic constants of monolayer MoS2 using molecular statics (MS) 

 

Molecular statics calculations have been performed using LAMMPS code to generate the elastic 

constants of MoS2 at 0K. We know that the MoS2 sheet consists of a tri-layer, and it experiences strong 

covalent bonding inward and weak van der Waal’s interaction over the tri-layer due to the polarization 

effect [186]. The elastic properties of MoS2 are determined as the derivative of the stress against the 

external strain according to Hooke’s law. The generalized Hooke’s law, for the number of 

independent elastic constants in MoS2, is three and can be written as 

 𝜎𝑖𝑗  =  𝐶𝑖𝑗𝑘𝑙 𝜉𝑘𝑙      (3.24) 

 

In Voigt notation, the stress–strain relation is. 

 

𝜎𝑖 =  ∑𝐶𝑖𝑗𝜀𝑗

6

𝑗=1

 
    (3.25) 

There are three independent elastic constants for MoS2, i.e., C11 is the coefficient of elastic 

constant relations due to σ11 and ε11 similarly for C22, and C12. The Cij values are correlated to the 

equal volume of the MoS2 unit cell. Therefore, the vacuum space has been set up large enough in the 

z-axis to avoid the interlayer interactions in MoS2 monolayer; the Cij constants then have to rescaled 

z = t0 to the actual thickness of monolayer MoS2. So, we have set t0 = 6.15 Å, i.e., one half of the out-

of-plane lattice constant of bulk MoS2. The MoS2 structure is fully optimized to its minimum energy 

by conjugate gradient minimization until the energy is converged. The specific finite lattice distortion 

of the simulation box leads to a change in energy during convergence, and the respective final elastic 

constants are obtained [187,188].  

The second-order elastic constants for elastic matrix express as:  

 
𝐶𝑖𝑗 =

1

𝐴0𝑡0
(
𝜕2𝐸

𝑑𝜀𝑖𝑑𝜀𝑗
) 

     (3.26) 

Where A0 is the area of the sample, t0 represents the thickness of MoS2 monolayer, E is the elastic 

energy, and ε is the strain tensor. In polynomial form for 2D materials discussed in [185,188] the 

elastic energy E(ε) of MoS2 is expressed as   
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𝐸(𝜀) =

1

2
𝐶11𝜀𝑥𝑥

2 +
1

2
𝐶22𝜀𝑦𝑦

2 + 𝐶12𝜀𝑥𝑥𝜀𝑦𝑦 
     (3.27) 

The εxx and εyy are the longitudinal strain in x and y directions and can also be represented as ε1 

and ε2 respectively in terms of Voight notations, and εxy is the applied shear strain in xy plane. The 

MoS2 sheet is arranged as zigzag and armchair in the x and y-axis. εij’s and Cij’s are the corresponding 

infinitesimal strain tensors and linear elastic constants [188,189]. Born set the benchmark mechanical 

stability for materials, which explains C11 > 0, C11 > C12, and C12 > 0 and the condition to satisfy for 

the 2D materials to be isotropic is C11 ≈ C22 and C12. The elastic energy in 2D materials for finite 

distortion is expressed as    

 

E (ε) =
1

2
(𝜀1𝜀2𝜀6) = [

𝐶11 𝐶12 𝐶16
. 𝐶22 𝐶26
. . 𝐶66

] {

𝜀1 = 𝜀11
𝜀2 = 𝜀22
𝜀6 = 2𝜀12

} 
    (3.28) 

After the MoS2 sheet is perfectly relaxed or energy is fully converged, the independent elastic 

constants are extracted for respective strains.  

3.6 Results and Discussion 

3.6.1 MoS2 sheet with pristine and random vacancy defects 

 

The findings show that the elastic constants for a MoS2 sheet with an infinite system size are C11 

= C22 = 149.42 N/m, C12 = 52.29 N/m, which interpret the isotropic nature of the material. One such 

example of MoS2 microstructure with no defects is shown in Figure 3.5. The OVITO [190] was used 

for visualization of results. 

a)   b)  

Figure 3.5 The atomistic model of monolayer MoS2 without defects, blue balls represent Sulfur 

atoms top and bottom layers and red balls represent Molybdenum. The elastic constants for this 

pristine MoS2 are C11 = C22 = 149.42 N/m, C12 = 52.29 N/m 
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Since the independent elastic constants for a 2D material MoS2 are three within the notation 

employed, the constant elastic tensor is a 3x3 symmetric matrix. Due to symmetry, the nine matrix 

elements will get reduced to three independent elements. The calculated elastic constants of MoS2 are 

shown in Table 3.3. 

Table 3.3. Mechanical properties of MoS2 

 C11 (N/m) C22 (N/m) C12 (N/m) 

This work 149.42 149.42 52.29 

Bertolazzi et al. [8] 180±60 180±60 - 

Li. M et al [19] 148.4 148.4 42.9 

Nguyen T.H et al [28] 130.4 130.4 26.5 

 

All elastic constants Cij calculated by conjugate gradient minimization using molecular statics 

simulation in comparison with literature results are given in Table 3.3. Due to symmetry C11≈C22 the 

obtained elastic constants marginally diverse from the reference data. We can see that C11 = 149 N/m, 

which corresponds to a good Young's modulus of 242 Gpa. Bertolazzi et al. [50] reported the elastic 

stiffness of MoS2 monolayer is 180 ± 60 N/m, which corresponds to a good Young's modulus of 

270±100 GPa by atomic force microscope (AFM) experiment method. The experimental results are 

higher than our simulation results from this study because in AFM method, tip enforced on the sheet 

consists of monolayer or multilayer MoS2 suspended on the layer incorporate with an array of circular 

holes are under biaxial tensile stress whereas we have applied uniaxial stress to the monolayer. Li et 

al. [167] performed MD simulation under the uniaxial test presented that C11 is found to be 199 GPa 

for the 1H MoS2, our results are while Nguyen T.H. [191] obtained an average young's modulus of 

201 GPa for monolayer MoS2. Note that the deviation is because they performed DFT calculations 

which are derived from finite difference approach by Thermo-pw code, and we have used the latest 

SW potential which can be used for higher temperature as well. A comparison of elastic constants 

from this work is consistent with the experimental and simulation results. Regardless of vacancies, 

the average value of C12 and C21 is used to assess the physical properties of MoS2. It is apparent that 

C12 ≈C21 due to the symmetric stiffness matrix.  

I now describe the effects of modeling monolayer MoS2 sheet with randomly distributed defect 

fraction presented in Figure 3.6 The geometry optimized average elastic constants for MoS2 under 

different defect fractions are given in Table 3.4. The elastic constants of monolayer MoS2 vs. the 

defect percentage are illustrated in comparison to the perfect MoS2 sheet. The MoS2 monolayer sheet 

is arranged as zigzag and armchair in x & y directions, which denotes the C11, C22 and C12 elastic 
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moduli, respectively. It is clear that chirality slight effect on elastic constants irrespective of defect 

ratios. The elastic constants Cij nonetheless started dwindling as the defect fraction piling up from 0 

to 25%. Its reduction becomes more expeditious as the defects grow in the sheet. I kept piling up the 

defect fraction and maximum ratio up to 25% results in a considerable decline in the elastic constants, 

which implies the impact is significant.   

 

 

Figure 3.6 The atomistic model of monolayer MoS2 with different percentage of defects. 

     

 

Table 3.4.  The mechanical parameters for MoS2 for different defect fractions along with Standard 

Deviation (SD). 

% of Defects C11 

[N/m] 

SD of C11 C22 

[N/m] 

SD of C22 C12 [N/m] SD of 

C12 

Pristine MoS2  149.42   149.42   52.29   

Only 1-atom 

defect  

149.11  0.1070 149.04  0.1075 52.23  0.0460 

1%  149.01  0.4758 148.85  0.4935 52.15  0.2185 

2%  140.70  0.7898 141.51  0.7638 48.52  0.3836 

5%  128.89  1.0179 128.89  1.1328 43.25  0.5485 

10%  108.30  1.5842 107.94  1.7279 33.70  1.0182 

15%  94.21  2.2419 93.47  2.2325 28.75 1.4486 

20%  80.99  3.5597 78.46  3.2201 23.16  2.4461 

25%  61.15  3.2207 51.52  3.2868 10.67 2.2325 
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The elastic constants of monolayer MoS2 nanosheet vs. the defect percentage are presented in Figure 

3.7. The dots denote average values of defects fraction with the fluctuating bar represents the standard 

deviation that shows maximum and minimum values for hundreds of cases with random distributed 

defects. The result of chirality on the elastic properties of MoS2 is negligible, despite the prevailing 

circumstances of the defect fraction. The elastic constants dwindle faster with the increase in the 

defect fraction, the maximum reduction of elastic constants is at 25%, more significant than 15%, 

10%, 5%, this implies the influence of defect fraction on the elastic constants is found to be 

substantial. 

  

 a)  
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b)  

 

c) 

Figure 3.7 The elastic constants of MoS2 as a function of the defect fraction: a) C11, b) C22, c) C12 
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To give comprehensive and comparable studies of elastic properties of randomly distributed 

defects, the elastic constants of MoS2 with varying defect ratios have been studied. The elastic 

constants of this defective MoS2 versus defect fraction are shown in Figure 3.7. For comparison, the 

elastic constant of pristine MoS2 is also included in the plots. Figure 3.7 shows the effect of defects 

on the elastic constants of MoS2 along with the individual independent elastic constants by comparing 

that of the pristine MoS2. It will be hard to conclude the locations of the unperturbed vacancies as they 

are distributed randomly throughout the layer. We took an interest in determining that these vacancies 

need to formed everywhere in the sheet irrespective of defect fraction ratio. So, to achieve this, we 

repeated with different random seeds for a sufficient number of times and estimated the elastic 

constants for each seed.  

Table 3.4 displays the average values of the outcomes of the built-in elastic test after repeating 

the simulation. These results will also motivate us to study the tensile and other properties of MoS2 

with the defects. With the increase in defect ratio, we observe the difference in the elastic constants 

nonlinearly as expected. It was found that up to 1% of defects had little impact as it trims down to 

2.1% rate of elastic constants when compared to defect-free MoS2 and the impact of this vacancy 

defects on the elastic constants was not that obvious and can be neglected. When the defect fraction 

surpasses to 2% and beyond, the elastic constants start trimming down at a rapid rate. Nevertheless, 

when defect ratios were 2%, 5%,10 %, and 25%, the decrease of the elastic constants was 4.02%, 

13.42%, 28.8% and 56.5%, respectively, compared with MoS2 with no defects. This result showed 

that after exceeding some defect density, the vacancy had a substantial effect and damages the 

robustness and uniform symmetry of MoS2 and has a full impact on the elastic tensile behavior of 

MoS2. It was also found that from Figure 3.7 as the elastic constants fluctuate within a certain range, 

this fluctuation occurs due to the locations of the defects placed randomly and changes its location 

with each test. These results draw attention towards the foundation in randomly distributed vacancies 

in MoS2 sheets.  
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3. MoS2 sheet with randomly diffusing sulfur to molybdenum (S→Mo) 

 

The concentration of antisite defects, i.e., sulfur atoms to molybdenum atoms, are also randomly 

distributed in sulfur layers of the MoS2 sheet.  

    

 

 

Figure 3.8 The atomistic model of monolayer MoS2 with different percentage of antisite defects 

 

Table 3.5.  The geometry optimized structural parameters for MoS2 for different defect fractions 

of antisite defects along with Standard Deviation (SD) 

% of 

Diffusion  

C11 

[N/m] 

SD of 

C11 

C22 

[N/m] 

SD of C22 C12 [N/m] SD of C12 

% w/o 

diffusion  

149.42  149.42  52.14  

0.1% S→Mo  147.03 0.0996 147.77 0.2300 51.29 0.0658 

 1%   S→Mo 145.82 0.3224 146.60 0.5541 50.77 0.1621 

 2%   S→Mo  143.98 0.4166 145.24 0.5991 50.38 0.1886 

 5%   S→Mo 139.69 0.6203 140.10 0.6698 48.39 0.2296 

10% S→Mo 133.91 0.8259 136.61 0.9077 46.04 0.2725 

15% S→Mo 127.40 0.9695 128.76 0.9829 41.25 0.3107 

20% S→Mo 118.75 0.9553 121.41 0.9556 36.62 0.3009 

25% S→Mo 61.15  1.016 51.52  0.9981 10.67 0.3607 
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a)   

 

b) 
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c) 

Figure 3.9 The elastic constants of MoS2 as a function antisite defect fraction: a) C11, b) C22, c) C12 

 

Figure 3.8 shows the diffusion of sulfur to molybdenum as antisite defect for different 

percentages of sulfur diffused in monolayer MoS2 for 25000 atoms nanosheet size. Table 3 shows that 

the elastic stiffness strengths of 0% to 25% molybdenum doped in sulfur layers in monolayer MoS2 

for sheet size of 65 Å x 65 Å (25000 atoms) increase by about 0.1%, 2 %, 1 %, 5% and an impressive 

peak of 25% when compared with the MoS2 is observed. The independent elastic constants of 1%, 

2%, 5%, 10% as well as 15% sulphur doped molybdenum in MoS2 drops by about 1%, 1.5%, 4%, 

8%, 11.%, 15%, 19% in comparison to the pristine MoS2. Increasing the percentage of sulfur doping 

in the MoS2 sheet, the elastic properties decrease. Further, it is found that the elastic properties due to 

sulfur vacancy defects with different percentages drop in great detail when compared the elastic 

properties due to diffusion at the respective percentage as deduce from Table 3.4 and Table 3.5.  

Figure 3.9 shows the effect of antisite defects molybdenum diffusion in sulfur, also dwindle the 

elastic constants of MoS2 for the different defect fractions. The change of fractions was in ranges from 

0.1 to 25% antisite defects. We started to pile-up the antisite defects and observed the elastic constants 

becomes more efficient and started to hinder further with the increase in the diffusion, unlike in case 

of pure defects where we see the elastic properties drop dramatically with each defect fraction. The 
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elastic constants Cij of antisite defect also shows the trend of decrease in nature when compared to 

defect-free structure, it decreases from 139.69 N/m for 5% defects to 113.83 N/m for 25 % defects 

when compared to the of pure defects as seen in Table 3.5. In order to provide the results of impact 

of the antisite defect in MoS2 sheet, again we prepared the random antisite defects models. The 

hundreds of replications were considered for MoS2 with 0 to 25% antisite defects.  

3.7 Summary 

 

The elastic constants for MoS2 monolayer using molecular statics simulation in great detail were 

investigated. MoS2 is flexible and isotropic for small deformations and the results obtained from this 

study are compared with the previous literature for defect-free MoS2 and progress towards higher 

defect fractions. he random distribution of defects in the MoS2 sheet in addition to antisite defects 

were also discussed in great detail. 

We have seen that the elastic constants of MoS2 started dwindling at a rapid rate with the defects 

pile-up. It started to dwindle at a slow rate of up to 1% of defects. Just as the defects increased to 2% 

and beyond, its reduction began dramatically. Hence when the defect percentage reaches 10%, the 

reduction in elastic constants was as huge as 28.8%. These vacancies defects greatly influenced the 

elastic behavior of the MoS2 lattice. With the increase in defects fraction, the vector sum of 

displacement has affected the geometrical symmetry of the MoS2 sheet. Moreover, in this study, we 

review the possibility of physical properties improvement and strengthening the elastic stiffness 

properties due to defects in MoS2 was confirmed.  
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Chapter 4 

Bioinspired Evolutionary Algorithm in Optimization of monolayer MoS2 
 

The challenges in technology often boil down to the quest for materials with specific and often undiscovered 

properties. Experimentation is one way to seek out and understand these new materials. However, it can be an 

arduous, expensive, and sometimes unfeasible process. Computational methods offer a valuable 

alternative to traditional experimentation for discovering new materials with desired properties [192]. 

They provide several advantages, including reduced time and cost, improved understanding of 

materials, and exploration of new conditions. Chapter 3 discussed the influence of point defects on 

the mechanical properties of monolayer MoS2, highlighting the importance of computational methods 

for understanding and designing new 2D materials. 

The chapter focuses on the design of nanostructures with prescribed mechanical properties, utilizing 

an approach that integrates Evolutionary Algorithms (EAs) with molecular dynamics for optimizing 

the design of nanomaterials. The study aims to determine the optimal size of voids within monolayer 

2D MoS2 nanostructures to achieve prescribed elastic properties. The approach integrates 

Evolutionary Algorithms with molecular dynamics simulations to optimize the material design. The 

Evolutionary Algorithm, a metaheuristic optimization technique inspired by natural selection, is used 

for solving complex problems related to the design of nanomaterials. In this case, it is employed to 

guide the identification and sizing of voids within 2D MoS2 nanosheets. 

The significance of this study lies in the demonstrated capability of the proposed method to accurately 

achieve nanostructures with predefined mechanical material properties by strategically introducing 

elliptical voids within the 2D MoS2 nanosheets. This method enables the controlled manipulation of 

the mechanical properties of these materials, offering potential advancements in tailoring material 

behavior for specific applications. 

4.1 Introduction 

In the realm of nanotechnology, the demand for materials with tailored properties is ever-increasing. 

Monolayer 2D molybdenum disulfide (MoS2) nanomaterial has emerged as a promising candidate 

due to its exceptional mechanical, electrical, and chemical properties. Researchers are actively 

exploring MoS2's potential applications in various fields, including desalination, DNA sequencing, 

and power generation [193–199]. 
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Understanding the properties and behavior of monolayer MoS2 is crucial for introducing this material 

into novel applications. However, one of the challenges is that fabricated MoS2 sheets often contain 

defects, including nanopores [200,201]. The presence of defects can significantly influence the 

material's properties and performance, making it essential to study and account for these defects in 

practical applications. Researchers are working to accurately predict and control MoS2 behavior, 

considering these defect-related factors. 

4.1.1 Void Defects in MoS2: Toward Nanopore Devices 

 

Two-dimensional (2D) materials containing void defects are a promising substitute for conventional 

nanopore membranes like silicon nitride. void defects on 2D materials, as atomically thin nanopore 

devices, have been used in such as DNA sensor, gas sensor and purifier at lab-scale. 

Molybdenum disulfide (MoS2) due to its semiconducting properties, making it favorable for various 

applications in sensing and electronics [202–204]. MoS2 nanopore membranes, particularly in the 2H 

structure, have shown promise as DNA detection sensors. Unlike graphene nanopore membranes, 

MoS2 nanopores demonstrate superior performance in transverse DNA detection without requiring 

specific surface treatment processes to prevent interaction between DNA and the surface. 

MoS2 is commonly found in nature in 2H form, among other polytypes such as 1T and 3R [205]. 

Synthesized MoS2 films might possess 3R structures, but most studies on MoS2 defects have been 

performed using exfoliated MoS2, typically in the 2H structure. The top and side views of 2H MoS2 

illustrate its atomic arrangement. The creation of the smallest void in 2H MoS2 can be achieved by 

the removal of one Mo atom or two S atoms. However, it's noted that a higher concentration of sulfur 

site (S site) Nano-voids compared to molybdenum site (Mo site) Nano-voids is observed in 

transmission electron microscopy (TEM) due to different knock-on thresholds between sulfur and 

molybdenum atoms [163]. 

Figure. 4.1 displays sequential images showing MoS2 void defects created by an 80 kV electron beam 

in a transmission electron microscope (TEM). Notably, the knock-on thresholds for S and Mo atoms 

are 80 kV and 560 kV, respectively. Consequently, S vacancies are formed first due to the slightly 

focused electron beams, as Mo atoms are less likely to be ejected by an 80 kV electron beam. This 

leads to the agglomeration of Mo atoms at the edge of the void defects. The images in Figure illustrate 

the increasing aggregation of Mo atoms at the void's edge under continued electron beam irradiation. 

While a few papers have reported the phenomenon of Mo atom agglomeration [206,207], none have 

detailed the corresponding effects on electrical or magnetic properties at the edge. 

Theoretical calculations suggest that at S vacancy sites, Mo-Mo metallic bonds are formed, canceling 

the magnetism by pairing the unsaturated spin electrons [160]. Therefore, the degree of Mo atom 
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agglomeration might affect the material's metallicity and, consequently, the electrical performance, 

such as the current signals when DNA or molecules traverse the Nano-voids. Consequently, to 

optimize MoS2-based nanopore devices, a comprehensive understanding of the edge configuration of 

MoS2 void defects and their impact on electrical and magnetic properties is essential. 

Thus, microstructural voids and various topological defects greatly influence the properties of MoS2. 

Understanding these factors is crucial for designing and optimizing nanomaterials and, by extension, 

the performance of MoS2-based devices. As MoS2 is grown and processed, it is prone to developing 

different types of defects, including vacancies, inclusions, dislocations, grain boundaries, nanovoids, 

and nano-cracks. These defects can impact the anticipated performance of MoS2-based nanodevices, 

affecting their preparation, handling, and overall functionality [163]. 

Moreover, the conditions in which MoS2-based devices are employed can also lead to the formation 

of defects [208]. Functionalizing 2D MoS2 sheets by introducing voids of specific sizes enables the 

tailoring of the material's mechanical properties. Recent research has focused on investigating the 

mechanical performance of monolayer MoS2, delving into how defects, inclusions, strength, damage, 

debonding, and failure impact its properties [165,193]. Understanding these effects is crucial for 

optimizing and harnessing the potential of MoS2 in various applications. 

Although the above monolayer MoS2 intriguing properties can feasibly be synthesized nowadays, 

they face different key challenges for industrial use, such as, the Synthesis and Scalability: to produce 

large, high-quality, single-layer samples, Bandgap Engineering: Tuning the bandgap to make it direct 

is important for improving its performance in electronic and optoelectronic devices. Integration: 

Integrating single-layer MoS2 with other materials and existing semiconductor technologies is a 

challenge. Thermal Management: Developing effective thermal management strategies for single-

layer MoS2 devices, which can become hot during operation. Overcoming these challenges is pivotal 

in order to harness the full potential of 2D materials and to explore their novel properties for various 

Figure 4.1 The sequential growth process of a void defect on molybdenum disulfide (MoS2) by 

electron beam irradiation in monolayer MoS2 sheet. Mo atoms aggregate at the edge. Scale bar=2 

nm. 
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applications. Given the vast number of possible configurations for 2D materials, numerous 

unexplored configurations may have exciting applications. Traditional trial-and-error experimental 

approaches require substantial time, effort, and cost, particularly when pursued without clear 

guidelines or specific targets. Computational design and prediction processes can significantly 

expedite the exploration of new 2D configurations. They enable the prediction of new materials and 

properties, forecast novel 2D structures and their growth routes, and provide ideal research platforms 

for controlling studies on 2D nanostructures under varying environmental conditions. 

The work focuses on addressing the identification problem to determine the parameters that define 

the void's shape concerning the material's properties. This approach holds potential for applications 

involving functional graded materials, nanomaterials, and the design of materials with prescribed 

properties. The concept involves crafting materials with predetermined characteristics through the 

introduction of voids. The method detailed in the chapter revolves around two main components: an 

optimized algorithm for solving problems and a solver for the direct problem. 

Nanostructures are simulated using the molecular dynamics (MD) method, enabling the computation 

of monolayer MoS2 with a spectrum of mechanical properties. These properties can be calculated via 

MD methodologies and involve a series of numerical tests, such as uniaxial tension, compression, 

and shear to assess the material's behavior [164,167,193,209]. 

The research involved the utilization of the well-established molecular dynamics (MD) code, 

LAMMPS, for resolving the direct problem. In recent times, inverse methods have gained significant 

traction for predicting structural and material properties. These methods facilitate the solution of 

parameter-related problems by employing optimization techniques and a series of solutions from 

direct problems. 

Inverse methods have been extensively used in addressing mechanical and thermomechanical 

problems, particularly in the search for material properties and their corresponding structures [210]. 

These problems are often tackled by formulating inverse problems based on direct problem solutions 

computed through numerical methods like the finite element method (FEM), boundary element 

method (BEM), and molecular dynamics (MD). The objective function involved in optimization 

algorithms within inverse methods typically exhibits multimodal characteristics, prompting the 

utilization of global optimization techniques throughout the problem-solving process. 

The utilization of evolutionary algorithms combined with boundary element method (BEM) 

computation in optimizing and identifying cracked structures and internal void defects subjected to 

thermomechanical and dynamical loading conditions are demonstrated in [210–212]. Sigmund [213] 

introduced the inverse homogenization method, leveraging it to adjust the elastic properties of 
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materials for various periodic truss, frame, and continuum structures. This method also aided in 

designing microstructures with prescribed elastic properties and negative Poisson's ratios. 

Additionally, an in-house implementation of evolutionary algorithms was applied to explore and 

identify new stable molecular graphene-like 2D materials [214,215]. 

In Chapter 3, The focus is on computing the mechanical properties, specifically the independent 

elastic properties, of monolayer MoS2 with both single and multiple random defects. These 

computational results underscored the substantial impact of defects on the elastic material properties 

of MoS2 nanosheets [193]. In this chapter, the objective is to determine the void size that corresponds 

to predefined elastic properties, which are user-defined. We have established the criteria for these 

prescribed elastic properties by assuming that the material contains a void, and these properties should 

be different from those of the material without a void. To achieve this, we have applied an 

evolutionary algorithm (EA) in conjunction with LAMMPS to find the size of the void that fulfills 

these prescribed elastic properties. This approach is a creative way to control and design materials 

with prescribed mechanical characteristics. 

This study aims to investigate the impact of void defects on the mechanical stiffness of MoS2. The 

computational expense involved in simulating disordered MoS2 with a void and random defect 

distribution using molecular methods can be quite high. Instead, this study employs an alternative 

approach: examining the lattice and prescribed stiffness of disordered layered MoS2 through the use 

of Evolutionary Algorithm optimization integrated with Molecular Dynamics [97]. This method 

offers the advantage of conducting extensive numerical calculations on large systems at a 

comparatively lower computational cost. As a result, the subsequent pages will detail a 

comprehensive set of results concerning the system's properties. 

The upcoming sections are structured as follows: Section 4.2 will discuss about the Evolutionary 

Computation for 2D material design. In section 4.3 will discuss evolutionary optimization techniques 

and how the objective function is evaluated within this context. Additionally, this section will include 

the specifics of the molecular dynamics modeling of 2D MoS2 with voids. It will outline the 

evolutionary identification of voids aimed at achieving prescribed properties by minimizing the 

objective function. Section 4.4 will delve into numerical identification examples showcasing the 

iterative capability of this method in solving the optimization problem. The ensuing pages will present 

a precise compilation of results for the system's properties. This organization will allow for a 

comprehensive exploration of the evolutionary optimization approach employed in achieving the 

specified material properties. 
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                              4.2. Empowering Nanostructure Design with Evolutionary Computation for 

2D material design 

 

Optimization plays an important role in the design and numerical modelling of existing macro and 

nanomechanical systems. By appropriately formulating the optimization problems, including the 

objective function, constraints, and design variables, it is possible to obtain new solutions with better 

tailored mechanical properties which are less energy-consuming, more durable, or lighter. A special 

case of the optimization problems associated with materials science is the design of new two-

dimensional (2D) nanomaterials and nanostructures. 

Optimization is a critical aspect in the design and analysis of macro and nanomechanical systems. By 

formulating the optimization problems effectively, one can target improved mechanical properties in 

terms of energy efficiency, durability, or weight reduction. Design of two-dimensional (2D) 

nanomaterials and nanostructures, optimization becomes particularly crucial. Important points 

regarding the optimization process for these materials: 

• Objective Function: The objective function in the optimization problem is typically focused 

on specific mechanical properties tailored to the intended application. For 2D nanomaterials, 

properties such as strength, elasticity, conductivity, or other material-specific characteristics 

might be optimized. 

• Constraints: Constraints can involve limitations on the design space, ensuring that the 

resulting structure or material meets certain criteria. This might include geometric constraints, 

material properties, or even manufacturing limitations. 

• Design Variables: These variables encompass the parameters that can be modified within the 

design to achieve the desired objectives. For 2D nanomaterials, this could involve factors like 

layer thickness, chemical composition, interlayer interactions, or defect engineering. 

• Simulation and Modelling: Numerical simulations and models, often involving 

computational tools like molecular dynamics simulations, density functional theory 

calculations, or finite element analysis, play a significant role in predicting the behavior and 

properties of these materials. 

• Trade-offs: Optimization often involves trade-offs. For instance, increasing strength might 

reduce flexibility or vice versa. Balancing these trade-offs is a critical aspect of the 

optimization process. 
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• Novel Material Design: Optimization techniques can be used to propose and identify entirely 

new materials or structures that possess specific and desirable properties, which might not 

exist naturally. 

• Energy and Resource Efficiency: Optimization in material design can also lead to more 

energy-efficient manufacturing processes or materials that are lighter and require fewer 

resources, contributing to sustainability efforts. 

The integration of optimization techniques with advanced material science is leading to the creation 

of innovative and purpose-built materials. The exploration of 2D materials, particularly carbon-based 

graphene allotropes, has indeed been a thriving area of research over the past decade. These materials 

exhibit extraordinary properties, ranging from mechanical strength to thermal and electronic 

characteristics [216–220]. Some of the prominent carbon-based graphene allotropes include graphene 

itself and variations such as graphene oxide, graphene nanoribbons, and graphene quantum dots. 

Besides graphene, several other monoatomic 2D materials have garnered attention due to their unique 

structures and properties. Some examples include: 

• Bismuthine: This is a 2D material composed of bismuth atoms arranged in a honeycomb 

lattice similar to graphene. It holds potential due to its distinctive electronic properties. 

• Germanene, Silicene, and Stanene: These are materials composed of Germanium, Silicon, 

and Tin atoms, respectively, arranged in a similar honeycomb lattice structure to graphene. 

Each possesses its own unique set of properties, making them potentially useful in various 

applications. 

• Boron Nitride: Similar in structure to graphene but made of boron and nitrogen atoms, boron 

nitride offers properties such as excellent thermal and chemical stability, making it valuable 

in various industries, particularly in nanoelectronics and as a potential lubricant. 

• Single-Layered Molybdenum Disulfide (SLMoS2): Unlike graphene, SLMoS2 consists of 

molybdenum and sulfur atoms. It exhibits semiconductor properties and has applications in 

electronics and optoelectronics. 

Some of these studies, such as the work done by Mrozek and collaborators in 2019 and Kuś et al. in 

2022 [221,222], specifically focus on the properties, synthesis methods, or potential applications of 

materials like boron nitride and single-layered molybdenum disulfide. 

Researchers have been actively exploring various computational methods to unravel the mysteries of 

nanostructures, particularly in terms of identifying their stable configurations. These efforts have 



100 

 

yielded valuable insights into the behavior and properties of nanomaterials at the atomic level. Among 

the employed techniques are non-classical optimization algorithms and atomic-level simulations. 

The authors of this study have made significant contributions to this field by developing bio-inspired 

optimization algorithms, such as the Artificial Immune System (AIS) and Particle Swarm 

Optimization (PSO). These algorithms have been effectively integrated with Molecular Statics (MS) 

and Molecular Dynamics (MD) solvers, enabling the exploration of various nanostructures, including 

small aluminum clusters, novel graphene allotropes, and other carbon-based 2D materials with 

tailored mechanical properties [214,223,224]. 

This particular work marks a continuation of the authors' research endeavors, focusing on further 

refining their optimization methods and expanding their application to a broader range of 2D 

materials. The aim is to identify stable configurations in diverse nanostructures beyond graphene, 

potentially involving different chemical elements or compounds. 

This research holds immense potential for advancing our understanding of nanostructures and paving 

the way for the development of novel materials with enhanced properties and applications. By 

elucidating the stable configurations of these materials, researchers can gain valuable insights into 

their behavior and interactions, enabling the design of nanomaterials with tailored properties for 

various applications, such as electronics, catalysis, and energy storage.    

 4.3 Defining the Problem Space: A Comprehensive Approach to Problem Formulation 

 

The optimization problem focuses on the automated design of MoS2 structures with specific, 

prescribed material properties. While we consider mechanical stiffness as a primary concern, it's 

essential to note that this optimization problem is versatile and can be adapted to target various other 

material properties such as thermal, optical, or any other property related to the microstructure. The 

objective function in this optimization problem is based on a comparison between the desired or 

prescribed material properties and the actual properties computed for each designed microstructure. 

The design vector ch encompasses parameters that define the size, shape, topology, and any other 

relevant characteristics of the microstructure. For instance, in this context, the MoS2 structure is 

modified by introducing voids, and the properties of these voids are represented and controlled using 

the design variables. The general formulation of the optimization problem can be stated as follows: 

Objective Function: The objective function ‘f(ch)’  depends on the prescribed material properties 

and the actual properties computed for each design of the microstructure. Where f(ch) represents the 
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difference between the prescribed material properties and the computed properties based on the 

design parameters represented by ch. 

Constraints: There might be additional constraints depending on the specific requirements of the 

problem. For example, constraints could limit the volume fraction or distribution of voids, or they 

could impose restrictions on the range of design variables within the feasible space. 

Design Variables: The design vector '𝑔𝑖 ' represents the variables that define the microstructure, such 

as dimensions, shape, void distribution, or any other parameters that impact the material properties. 

These variables can be adjusted to find the optimal design that aligns with the desired material 

properties. 

The process involves iteratively adjusting the design variables '𝑔𝑖 ' to minimize the difference between 

the prescribed and computed material properties. Optimization algorithms, such as the Evolutionary 

Algorithm described earlier, are used to search through the solution space and determine the optimal 

set of design variables that yield the desired material properties. 

By formulating the optimization problem in this manner, it becomes possible to systematically design 

and engineer microstructures with specific material properties, facilitating the creation of tailored 

materials for diverse applications. 

 

{

𝑓𝑖𝑛𝑑                            𝐜𝐡 = (𝑔1, 𝑔2, ……𝑔𝑁)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒               𝑓(𝑐ℎ) = ‖𝐏 − 𝐏𝑟𝑒𝑓‖

𝑠. 𝑡                   𝑔𝑖𝐿 ≤ 𝑔𝑖 ≤ 𝑔𝑖𝑈

 

    (4.1) 

The equations presented indicate a mathematical representation of the optimization problem. The 

variables 𝑔𝑖𝐿 and 𝑔𝑖𝑈 represent the lower and upper constraints respectively for the design variables 

(defining aspects such as size, shape, and distribution of voids within the nanostructure). The element 

P represents the properties of the nanostructure obtained from a given design vector ch, while 𝐏𝑟𝑒𝑓 

represents the desired reference or prescribed properties of the nanostructure. The goal of the 

optimization is to minimize the difference between the current (obtained) and the reference 

(prescribed) material properties. This difference is formulated as a function of the design variables 

ch. The objective function aims to reduce this difference to zero, indicating an exact match between 

the reference and obtained properties. However, achieving an exact match may not always be feasible 

or practical due to various constraints or complexities. Hence, a small difference between the 

reference and obtained properties might also be acceptable, depending on the specific problem 

context. 
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The focus of the work is on optimizing the nanostructure, particularly considering mechanical 

properties, which in this case, are represented by the variables P and 𝐏𝑟𝑒𝑓. These properties are 

dependent on the stiffness of the nanostructure, including the introduced voids. The optimization 

process involves iteratively adjusting the design variables (gi) to minimize the difference between the 

computed (P) and the desired (𝐏𝑟𝑒𝑓) material properties, particularly focusing on the mechanical 

properties related to the stiffness of the nanostructure with incorporated voids. The objective function, 

therefore, represents the discrepancy between the actual and desired properties, and the optimization 

process aims to find the optimal combination of design variables that bring the properties of the 

nanostructure as close as possible to the prescribed reference properties, especially focusing on 

mechanical stiffness affected by the introduced voids. The stress–strain relationship for small strains 

can be expressed with Voight notation as follows: 

 𝜎𝑖𝑗 = 𝐏𝑖𝑗𝜀𝑖𝑗     (4.2) 

where 𝜀𝑖𝑗 denotes the strain components, and 𝐏𝑖𝑗 denotes the elastic constants to be used during 

objective function evaluation. The shape of the nanostructure is modified according to ch by 

introducing an elliptic void, as shown in Figure 4.2. 

 

Figure 4.2 The nanostructure with an elliptical void described by two design variables. 

A 2D infinite nanostructure was modeled using periodic boundary conditions. This means that the 

structure was designed in a way that its boundaries behave as if they are connected to each other, 

allowing for an infinite replication of the structure. The use of periodic boundary conditions is 

common in simulations to replicate an infinite system, allowing for more efficient calculations by 

eliminating the need to model an extensive structure entirely. The maximum size of the void within 

this nanostructure was limited by the size of the unit cell utilized in the simulations. The unit cell is 

the fundamental repeating unit used to create the periodic structure and its size defines the boundaries 
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within which the simulation is conducted. The voids within the nanostructure are limited in size based 

on the dimensions of this unit cell. 

The mechanical properties, specifically the stiffness in two directions, were computed using a 

Molecular Dynamics (MD) approach. The outcome of these simulations provides information on the 

nanostructure's mechanical behavior, allowing for the assessment of stiffness in the specified 

directions. These computed mechanical properties are likely part of the data used to evaluate the 

fitness function in the optimization process aimed at tailoring the material's properties. The algorithm 

for determining the stiffness of the nanostructure is shown in Figure 4.3.  

 

Figure 4.3 Determination of nanostructure stiffness in two directions. An ellipse is introduced into 

the pristine nanostructure by removing atoms in black area. Next, the structure is relaxed, and two 

analyses of microstructure stretching are performed in two different directions. Then, the stiffness is 

computed on the basis of the MD results. 

In the study, the process of modifying the 2D nanostructure involved introducing voids into the 

pristine nanostructure. Subsequently, a relaxation step was carried out to stabilize the structure after 

the void introduction. This relaxation process aims to allow the structure to equilibrate and minimize 

any structural instabilities resulting from the void creation. Following the relaxation step, the 

nanostructure underwent uniaxial tensile load testing. stress–strain curves were obtained in two 

different directions, providing insights into how the material responds to tensile loads along those 

specific axes. It's highlighted that while the focus in this work is on stiffness computation in two 

specific directions for a monolayer of MoS2, other types of loads could be applied to investigate 

additional material properties. For instance, shear stresses, as well as thermal and optical properties 
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of the nanostructure, could be explored by applying different types of loads or subjecting the material 

to various environmental conditions or simulations. The atomic model used in this study consisted of 

approximately 10,000 atoms within the nanosheet, covering a domain size of about 175 square 

angstroms (Å2). This information provides a sense of the scale and complexity of the atomic model 

used in the simulations, reflecting the detailed nature of the computational analysis performed in the 

study. 

The Stillinger–Weber (SW) [93,94] potential was utilized to represent the atomic interactions within 

the MoS2 nanostructure. Before subjecting the MoS2 structure to tensile deformation, the model was 

relaxed at a specified temperature of 300 Kelvin (K) and at 0 bar pressure. This relaxation process 

was conducted through an isothermal–isobaric ensemble (NPT) for a duration of 30 picoseconds (ps). 

The NPT ensemble maintains a constant temperature and pressure throughout the simulation, 

allowing the structure to equilibrate under these conditions. Subsequently, the uniaxial tensile 

deformation was carried out at a constant temperature of 300 K. The Nose–Hoover thermostat was 

used to regulate and maintain the temperature of the simulation system. This thermostat helps control 

the temperature of the system by adjusting the kinetic energy of the simulated particles. 

The positions and velocities of all atoms were updated using the Verlet integration algorithm. The 

simulations were performed using the LAMMPS software package. Additionally, the Open 

Visualization Tool (OVITO) was utilized for visualization and analysis of the output data from the 

simulations [190]. The uniaxial tensile deformation was carried out at a constant strain rate of 0.0001 

picoseconds-1 to estimate the stiffness of the MoS2 nanostructure. This type of deformation involves 

applying a force to stretch the material along a single axis, allowing the calculation of stress–strain 

relationships to determine the mechanical properties, specifically stiffness, in the direction of the 

applied force. 

Various methodologies are available to calculate stress within the simulated systems. Among these 

methods, the virial theorem, a concept rooted in the works of Clausius and Maxwell, is well-known. 

There are also more modern approaches to stress calculation, including methodologies developed by 

researchers such as Hardy, Lutsko, and Tsai [225–227]. While the modern approaches are considered 

more advanced and potentially more accurate than the virial theorem, studies have shown that 

excellent agreement between the Hardy approach and the virial stress approach can be achieved with 

adequate spatial or temporal averaging [228,229]. This means that, under specific conditions where 

averaging is sufficiently applied, these methods can converge and produce comparable results. 
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However, due to the availability and straightforward implementation in many molecular dynamics’ 

codes, including LAMMPS, the virial stress approach is commonly utilized in this study. LAMMPS 

provides readily available implementations for stress calculations in molecular dynamics simulations. 

Specifically, in the molecular dynamics calculations performed using LAMMPS, the stress tensor 

components were computed following particular methodologies, as detailed in references [230]. 

These stress calculations provide essential information about the distribution and behavior of stress 

within the simulated system, which is critical for understanding the mechanical properties of the 

material and its response to external forces. 
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     (4.3) 

where a and b denote the Cartesian components, fij is the force acting on atom i due to another atom j, V is 

volume, mi  mass and ui velocity of atom i, and N is the number of atoms. Figure 4.4 shows examples of two 

simulation results with a stiffness of 163 GPa and 158 GPa. 

 

Figure 4.4 Examples of stress-strain relationship during uniaxial tension in two directions. 

 

The objective function value could be computed for such a case as the sum of the absolute difference between 

computed stiffness and prescribed material properties. 

Figure 4.5 shows the deformation evolution of MoS2 samples at maximum strain values for a stiffness of 163 

Gpa and 158 Gpa, and the atoms are painted according to the local elastic atomic strain. The distribution of 

atomic strain is compared at a strain where MoS2 sample are in the linear elastic phase according to 

the stress curve in Figure 4.4.  
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Normalized strain distribution near the central void with the radii of of g1 = 28.12 Å and g2 = 23.15 

Å under the nominal tension stress of 160 GPa are shown in Figure 4.5. From the distribution results 

of the normal strain εxx (Figure 4.5 a-d) and εyy (Figure 4.5 e-h), it is found that the normal strain 

concentration is different with homogeneous materials. As we all know, based on the homogeneous 

material assumption, the stress (strain) concentration location is at ±90° void tips. The first image 

(Figure 4.5b), corresponding to strain εxx =0.01, presents the appearance of the first plastic strains, 

which occur on the opposite sides of the void in the area of the thinnest cross-section of the sample. 

The geometrical discontinuities in an elastic solid are known to re-distribute the strains applied on its 

boundary, thus leading to unexpected regions of compressive strains inside the solid. The further 

increase of the external load results in the growth of strains in the area surrounding the void. The 

propagation of the plastic deformations to the outer edge of the sample (in the horizontal direction, it 

is accompanied by the first two inclined paths of plastic strains (Figure 4.5 c and d)). The distribution 

of strain field presented in Figure 4.5c corresponds to εxx =0.025. In this case, the presence of the map 

of deformations shows the characteristic symmetric pattern, which is repeated with higher absolute 

values for higher loads (see Figure 4.5 d). It is also interesting to note that, by comparing the strain 

calculated from the stress methods, the atoms bearing the largest stress is not the ones with largest 

distortion, which may be attributed to the discrete and incomplete nature of lattice at the void edges. 

 

Figure 4.5 Elastic stress concentration around a hole in a MoS2 subjected to uniform tensile forces 

on the horizontal sides (a-d) and vertical sides (e-h) and traction-free on the other two boundaries 

respectively. ‘Red’ identifies regions of compressive (negative) azimuthal stresses, ‘dark blue’ is 

used for large tensile (positive) stresses, and the areas shown in ‘pale blue’ are only modestly 

affected by the presence of the hole. 
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4.4 Examples of Numerical optimization 

 

The process of optimizing the nanostructure by introducing voids to achieve specific, prescribed 

mechanical properties. This optimization process is demonstrated across various cases involving 

different sets of prescribed material properties. The EA utilized in this study comprises two sub-

populations, each containing a total of 32 individuals. These individuals represent different potential 

designs or solutions for the nanostructure. The EA employs specific methods for selection, mutation, 

and crossover: 

Tournament Selection: This involves selecting individuals based on a tournament size of 5. 

Uniform Selection: Employed with a probability of 0.3, offering uniform selection across the 

population. 

Gaussian Mutation: Utilized with a probability of 0.5, where random mutations are introduced 

following a Gaussian distribution. 

Simple Crossover: Used with a probability of 0.1, involving a basic exchange of genetic information 

between selected individuals. 

Arithmetic Crossover: Also applied with a probability of 0.1, facilitating a crossover process that 

operates on numerical values to produce new solutions. 

These parameters were chosen based on the prior experience gained during the resolution of structural 

optimization problems, referencing earlier studies by Kokot, Orantek, and Mrozek [215,224,231], 

which provided insights into the effective configuration of EA parameters for similar optimization 

problems. The number of iterations for the EA was set at 50, implying that the EA underwent 50 

cycles or generations to search and optimize the design space for the nanostructure, aiming to achieve 

the desired mechanical properties within the prescribed constraints. This iterative process allows the 

algorithm to refine the solutions and progressively approach the optimal design for the given 

mechanical properties. 

An optimized nanostructure with an approximate size of 170 Å × 170 Å was employed. This 

nanostructure was designed to contain an elliptical void, allowing for a specified range in void size. 

The void's dimensions could vary from 1 × 1 up to 50 × 50 Å, representing the radius of the elliptical 

void. The optimization process targeted the adjustment of this nanostructure, including the 

manipulation of the elliptical void within it, to achieve the prescribed material characteristics. The 

termination or stop condition for the optimization process was formulated as reaching the maximum 

number of iterations. Once the EA completed the specified number of iterations, the optimization 
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process concluded. This condition set a limit on the number of cycles the EA could undergo to search 

and refine the nanostructure design space within the given constraints and objectives. 

The evaluation of the fitness function for each individual within the EA was conducted in line with 

the method described in chapter 2. Section 2.7. This evaluation required solving two problems using 

the LAMMPS software to determine the stiffness in two different directions. The fitness function was 

computed based on the results obtained from these simulations. To expedite the computation of fitness 

functions in each iteration, a parallel computing approach was implemented. This parallel method 

achieved high efficiency by distributing the workload across multiple processing units. Specifically, 

when the number of processing units equaled the number of molecular dynamics (MD) problems 

(which was 64 in this case, accounting for the number of individuals multiplied by the number of 

mechanical properties), computations were performed in a highly parallel manner. 

Moreover, additional processing units were employed to parallelize each MD simulation further. This 

approach allowed for efficient utilization of computational resources and faster computation of fitness 

functions, particularly in scenarios involving a considerable number of individuals and properties. 

The computational tasks were executed using supercomputers such as Okeanos and Karolina, where 

several hundred to even thousands of processor cores were utilized simultaneously during the 

computations. These high-performance computing systems were instrumental in facilitating the 

extensive computational demands of the simulations, enabling efficient parallel processing and 

significantly reducing the overall computational time. 

The changes in the best objective function over few iterations for adequate nanostructures with 

prescribed material properties Pref11 = Pref22 = 160 GPa are shown in Figure 4.6. 
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Figure 4.6 Progress of the convergence of the objective function indicating the evolution of the void 

during iterative generations for prescribed elastic properties Pref11 = 160 GPa, Pref22 = 160 GPa. 

The corresponding void dimensions obtained during generations were (i) g1 = 46.06 Å and g2 = 2.95 

Å, (ii)g1 = 32.18 Å and g2 = 6.07 Å, (iii) g1 = 33.92 Å and g2 = 8.86 Å, (iv) g1 = 21.36 Å and g2 = 14.88 Å, 

(v) g1 = 18.41 Å and g2 = 19.38 Å, and (vi) g1 = 28.12 Å and g2 = 23.15 Å. 

 

Three separate void identification analyses were conducted for the MoS2 nanosheet, each associated 

with distinct prescribed material properties. These analyses involved inducing an elliptical void at the 

center of the sheet. Table 4.1 in the paper presents the values of the best solutions obtained from these 

numerical tests. Specifically, it showcases the calculated material properties (referred to as P11 and 

P22) corresponding to the ellipse radius denoted as g1 and g2, respectively, for each of the prescribed 

material properties. 

However, it's noted in the results that the obtained material properties (P11 , P22) for the given ellipse 

radii (g1, g2) were not entirely identical to the prescribed material properties (Pref). This deviation or 

difference between the obtained and prescribed material properties is quantified and represented by 

the errors eP11 and eP22. The mentioned errors eP11 and eP22 signify the discrepancy or difference 

between the obtained and prescribed material properties. Despite not being identical, the obtained 

material properties were observed to be very close to the prescribed ones. This signifies that the 

optimization process managed to achieve material properties that closely aligned with the specified 

prescribed values, though they weren't exact matches. The errors, eP11 and eP22, likely reflect the 

degree of deviation or inaccuracy between the obtained and prescribed material properties. 
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Table 4.1. The prescribed and resulting stiffness, ellipse radius, and error of obtained stiffness. 

Case Pref11 

(GPa) 

P11 

(GPa) 

Pref22 

(GPa) 

P22 

(GPa) 

g1 

(Å) 

g2 

(Å) 

eP11 (%) eP22 (%) 

1 150.0 149.2 180.0 179.5 36.35 12.19 0.5 0.3 

2 160.0 162.6 160.0 158.0 28.12 23.15 1.6 1.3 

3 180.0 179.5 150.0 148.0 15.35 33.44  0.3 1.3 

 

Figure 4.7, 4.8 and 4.9 displays the resulting structures corresponding to the three different cases 

examined in the analysis. Each case had specific goals related to the size and orientation of the 

elliptical void within the MoS2 nanostructure, guided by the prescribed material properties. The 

expectations for the three cases were as follows: 

• First Case: The nanostructure was anticipated to have an ellipse with a larger radius in 

the y-direction, relative to the x-direction. 

 

Figure 4.7 Monolayer MoS2 nanosheet with void identified by optimization: (a) Pref11 = 180, 

Pref22 = 150 GPa (g1 = 15.35 Å and g2 = 33.44 Å) 

 

• Second Case: The radii of the ellipse in the x and y directions were expected to be similar, 

as per the prescribed material properties. 
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Figure 4.8 Monolayer MoS2 nanosheet with void identified by optimization: (b) Pref11 = 160, Pref22 = 

160 GPa (g1 = 28.12 Å and g2 = 23.15 Å) 

 

• Third Case: The prescribed material properties aligned with the first case, implying that 

the ellipse's radii should be similar to the first case. 

 

Figure 4.9 Monolayer MoS2 nanosheet with void identified by optimization: (c) Pref11 = 150, Pref22 = 

180 GPa (g1 = 36.35 Å and g2 = 12.19 Å) 

Importantly, the MoS2 nanostructure wasn't symmetrical in the x (g1) and y (g2) directions, implying 

that the second case would not necessarily yield the same ellipse radii in both x and y directions. This 

lack of symmetry in the material structure was considered in the analysis. The results obtained were 
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in accordance with these expected goals and intuitive reasoning, generating exact values for the size 

and orientation of the void within the nanostructure. This successful alignment between the prescribed 

and achieved results indicated the effectiveness of the optimization method in tailoring the structure 

to meet specific material property requirements. It's highlighted that while the method demonstrated 

success with the prescribed stiffness values, there are limitations related to the maximum stiffness of 

the MoS2 sheet and the size constraints of the void, affecting the scope and applicability of the 

method. 

4.5 Summary 

 

In this chapter, we introduce evolutionary computation and analyze the similarities and differences 

with conventional search algorithms. The reasons for using EC in solving optimization problems and 

the situations where EC could be beneficial are briefly discussed. A brief review on different EAs and 

their components is provided. The use of EAs by solving a case problem has been demonstrated. 

The emergence of defects in materials like MoS2 can lead to a reduction in their mechanical 

properties, such as fracture strength and Young’s modulus. However, these defects can have potential 

applications in creating innovative materials or nanosystems, such as graded materials. Leveraging 

defects, such as voids, in MoS2 for specific purposes is an area of interest. 

In this study, an optimization method was employed to tailor the material properties of a periodic 

monolayer MoS2 containing a void as a defect. The goal was to optimize the material to meet 

prescribed mechanical properties while integrating the presence of the void as part of the design. 

The problem was formulated as an optimization challenge seeking to identify the simplest possible 

nanostructure that adhered to constraints established by prescribed elastic constants. Through 

numerical examples, the study demonstrated that the proposed optimization method successfully 

determined the void size required to achieve the desired mechanical properties. 

The research showcases the potential of molecular simulations for 2D nanostructures. It emphasizes 

the efficiency of using molecular simulations to design nanostructures with specific, prescribed 

properties. Moreover, it indicates that the method is adaptable and could be extended to incorporate 

considerations for thermal or optical properties of the nanostructure by adjusting the components of 

the objective function and employing suitable simulation techniques to address these additional 

properties. 
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Chapter 5  

Conclusions and future work 

The mechanical properties of 2D MoS2 nanostructures, including their exceptional strength and 

stiffness, are meticulously explored in this PhD Thesis. The comprehensive investigation, 

encompassing a wide range of experimental and theoretical techniques, has yielded profound insights 

into the underlying mechanisms that govern their mechanical behavior. The unique structural and 

compositional features of 2D MoS2 nanostructures enable them to withstand significant external 

forces and deformations without compromising their integrity. This remarkable resilience stems from 

the delicate interplay of these structural and compositional aspects. 

The research demonstrates that 2D MoS2 nanostructures exhibit remarkable tailorability. By 

manipulating various structural and compositional parameters, we can optimize their mechanical 

properties to suit specific application requirements. These findings have significant implications for 

the development of next generation nanodevices based on 2D MoS2 nanostructures. By understanding 

and manipulating their mechanical properties, we can harness their exceptional strengths to create 

highly resilient, durable, and functional nanodevices that revolutionize various technological 

domains. 

My initial research endeavor involved conducting systematic molecular statics simulations to 

investigate the mechanical properties of monolayer MoS2 nanosheets. The innovative approach 

employed molecular statics calculations to analyze the elastic constants of pristine and defective 

MoS2. The elastic constants of infinite sheets were found to be isotropic, indicating their uniform 

orientation and behavior. The calculated elastic constants satisfied the Born mechanical stability 

criterion, ensuring the structural integrity of the material under mechanical stress. Specifically, the 

computed elastic constants adhered to the following inequalities: C11 > 0, C11 > C12, and C66 > 0. 

These inequalities signify that MoS2 exhibits positive stiffness constants along all three principal 

axes, ensuring resistance to deformation and maintaining its integrity. Furthermore, our investigations 

revealed a significant decrease in elastic moduli and associated properties with increasing defect 

concentrations. This decline in mechanical properties primarily stems from the disruption of the 

regular atomic structure caused by the presence of defects. Notably, antisite defects, which involve 

the substitution of atoms within the atomic lattice, were found to have a particularly detrimental effect 

on the mechanical properties of MoS2. 
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The systematic exploration of the geometric structures of antisites and vacancies in monolayer MoS2 

through molecular statics calculations has significantly advanced our understanding of the variation 

in mechanical properties induced by these point defects. I have demonstrated that the introduction of 

point defects, particularly antisites, can significantly alter the mechanical behavior of MoS2. These 

findings provide valuable insights for optimizing the mechanical properties of MoS2 for various 

applications. Overall, the research has considerably improved the understanding of point defects in 

atomically thin transition metal dichalcogenides. These insights should benefit their potential 

applications in designing optoelectronic and nanoelectronic devices by enabling the tailoring of their 

mechanical properties to suit specific requirements. 

My second research endeavor aimed to design MoS2 nanostructures with prescribed mechanical 

properties, inspired by the study of their mechanical stiffnesses. To achieve this goal, I employed a 

hybrid optimization algorithm, which employs a combination of evolutionary algorithm (EA) and 

molecular dynamics (MD) simulations. The EA optimization program allows users to define the 

design domain, including the nanovoid, and specify possible boundary conditions. Upon execution, 

the program iteratively optimizes the structure until the desired mechanical properties are met. If no 

further optimization is possible due to the absence of removable atoms, the program terminates, 

indicating a structural failure. It still outputs the most optimized configuration obtained before the 

termination. 

The main objective of this work was to introduce and evaluate the hybrid optimization algorithm for 

the design of 2D MoS2 nanostructures with prescribed mechanical properties. The proposed algorithm 

combines the strengths of EAs and MD simulations, leveraging the efficient search capabilities of 

EAs for exploration of the design space while employing MD simulations for accurate evaluation of 

mechanical properties. The EA component utilizes mutation and crossover operators to effectively 

explore and exploit the design space. The crossover operator ensures diversity among the candidate 

structures, preventing the algorithm from prematurely converging to suboptimal solutions. The high 

search efficiency of the EA enhances the practical applicability of the algorithm in inverse problem-

solving scenarios in nanoscience. Additionally, the algorithm's modular design allows for its 

integration with various molecular modeling software packages. 

Numerical simulations demonstrated the efficacy of the proposed method in identifying stable 

configurations with nanovoids in MoS2 nanostructures that exhibit the prescribed mechanical 

properties. These results were further validated through MD simulations of tensile tests, confirming 

the accuracy of the optimized structures. The algorithm's versatility extends to the optimization of 

three-dimensional molecular structures, as it can be applied with various minimization methods and 
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atomic potentials. The obtained results, the broad range of potential applications, and the adaptability 

of the algorithm make it a promising tool for general molecular optimization, not limited to 2D 

structures. 

Overall, the hybrid optimization algorithm developed in this work provides a powerful and versatile 

tool for designing MoS2 nanostructures with tailored mechanical properties. Its combination of EA 

and MD simulations enables efficient exploration of the design space, ensuring the identification of 

structures with the desired mechanical characteristics. The algorithm's modularity and adaptability to 

various computational setups further enhance its practical utility. The obtained results pave the way 

for the development of novel MoS2-based nanodevices with enhanced mechanical properties, tailored 

to specific applications in various fields. 

As an outlook for future studies, a few topics of interest are summarized as follows: 

• Addressing thermal effects and rippling: Current first-principles and molecular calculations 

have provided valuable insights into the elastic properties of 2D materials. However, recent 

experimental findings suggest that temperature and rippling can significantly impact the in-

plane and bending stiffnesses of these materials. Further experimental studies are necessary 

to fully understand these effects. In parallel, theoretical advancements involving statistical 

mechanics approaches and MD simulations are needed to predict the elastic behavior of 2D 

materials at finite temperatures. 

• Defect engineering for enhanced strength and toughness: The presence of various defects can 

significantly alter the mechanical properties of 2D materials. Defect engineering techniques 

offer the potential to tailor the strength and toughness of these materials. However, 

fundamental questions regarding fracture mechanics of 2D materials remain unanswered from 

both continuum and atomistic perspectives. Addressing these questions is crucial for 

unlocking the full potential of defective engineering. 

• Exploring novel applications exploiting superior mechanical properties: The development of 

novel applications that leverage the superior mechanical properties of 2D materials is an 

exciting area of research. Structural designs inspired by origami and kirigami, which involve 

folding and cutting patterns, hold promise for unprecedented applications in flexible and 

biomedical devices. 

These research directions will undoubtedly lead to significant advancements in our understanding 

and manipulation of the mechanical properties of 2D materials, paving the way for the development 

of next generation nanodevices with enhanced performance and applications in various field. 
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